
Our heads are round so our thoughts may change direction.
Francis Picabia (1879–1953).

Paradigms Lost.
Apologies to John Milton.

CHAPTER 21

The Meridional Overturning Circulation
and the Antarctic Circumpolar Current

The meridional overturning circulation, or the moc, of the ocean is the circulation associ-
ated with sinkingmostly at high latitudes and upwelling elsewhere, withmuch of themerid-
ional transport taking place below the main thermocline. Understanding this circulation is

one of the main goals of this chapter. The theory explaining the moc is not nearly as settled as that
of the quasi-horizontal wind-driven circulation discussed in Chapter 19, but considerable progress
has been made, in particular with a significant re-thinking of the fundamentals occurring in the
late 20th and early 21st century, as we will discover. Our other main goal is to glean an under-
standing of the Antarctic Circumpolar Current, or acc, the theory of which has also undergone a
transformation over that same period. The acc is important not only in its own right, but because
it mediates the mocs of the individual ocean basins, connecting them into a global circulation.

That there is a deep circulation has been known for a long time, largely from observations of
tracers such as temperature, salinity, and constituents such as dissolved oxygen and silica.1 We
can also take advantage of numerical models that are able to assimilate observations (from hydro-
graphic measurements, floats and satellites) and produce a state estimate of the overturning cir-
culation that is consistent with both the observations and the equations of motion, and one such
estimate is illustrated in Fig. 21.1. We see that the water does not all upwell in the subtropics as we
tacitly assumed in the previous chapter. In fact, much of the mid-depth circulation more-or-less
follows the isopycnals that span the two hemispheres (Fig. 21.2), sinking in the North Atlantic and
upwelling in the Southern Ocean, with the transport in between being, at least in part, adiabatic.

The moc used to be known as the ‘thermohaline’ circulation, reflecting the belief that it was
primarily driven2 by buoyancy forcing arising from gradients in temperature and salinity. Such a
circulation requires that the diapycnal mixing must be sufficiently large, but many measurements
have suggested this is not the case and that has led to a more recent view that the moc is at least
partially, and perhaps primarily, mechanically driven, mostly by winds, and so along isopycnals
instead of across them. However, the situation is not wholly settled, and it is almost certain that
both buoyancy and wind forcing, as well as diapycnal diffusion, all contribute. The possible role of
multiple basins (Atlantic, Pacific, etc.) on the moc is likewise not fully understood.

In the first half of the chapter we mainly discuss somewhat classical topics associated with
the buoyancy forcing. Then, beginning in Section 21.6, we discuss the role of wind forcing in
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802 Chapter 21. The Meridional Overturning Circulation and the acc

Fig. 21.1 An estimate of the mean
meridional overturning circulation
of the Atlantic (i.e., the streamfunc-
tion of the zonally averaged merid-
ional flow) in Sverdrups.3

producing a moc. This forces us to take an extended diversion into the dynamics of the acc in
Section 21.7 and then, in the last two sections, we present a theory of the moc that incorporates
both wind and buoyancy effects. We start by considering a simple but revealing fluid model of
buoyancy forcing at the surface in a very idealised setting.

21.1 SIDEWAYS CONVECTION
Perhaps the simplest and most obvious fluid dynamical model of the overturning circulation is
that of sideways convection. The physical situation is sketched in Fig. 21.3. A fluid (two- or three-
dimensional) is held in a container that is insulated on all of its sides and its bottom, but its upper
surface is non-uniformly heated and cooled. In the purest fluid dynamical problem the heat enters
the fluid solely by conduction at the upper surface, and onemay suppose that here the temperature
is imposed. Thus, for a simple Boussinesq fluid the equations of motion are

D𝒗
D𝑡
+ 𝒇 × 𝒗 = −∇𝜙 + 𝑏𝐤 + 𝜈∇2𝒗, D𝑏

D𝑡
= 𝜅∇2𝑏, ∇ ⋅ 𝒗 = 0, (21.1a,b,c)

where 𝒇𝑓𝐤, and with boundary conditions

𝑏(𝑥, 𝑦, 0, 𝑡) = 𝑔(𝑥, 𝑦), (21.2)

where 𝑔(𝑥, 𝑦) is a specified field, and 𝜕𝑛𝑏 = 0 on the other boundaries, meaning that the derivative
normal to the boundary, and so the buoyancy flux, is zero. The oceanographic relevance of (21.1)
and (21.2) should be clear: the ocean is heated and cooled from above, and although the thermal
forcing in the real ocean may differ in detail (being in part a radiative flux, and in part a sensible
and latent heat transfer from the atmosphere), (21.2) is a useful idealization. An alternative upper
boundary condition would be to impose a flux condition whereby

flux = 𝜅 𝜕
𝜕𝑧
𝑏(𝑥, 𝑦, 0, 𝑡) = ℎ(𝑥, 𝑦), (21.3a)

where ℎ(𝑥, 𝑦) is given. In some numerical models of the ocean, the heat input at the top is param-
eterized by way of a relaxation to some specified temperature. This is a form of flux condition in
which

𝜅𝜕𝑏
𝜕𝑧
= 𝐶(𝑏∗(𝑥, 𝑦) − 𝑏), (21.3b)
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Fig. 21.2 The climatological
zonally-averaged potential density
(𝜎𝜃) in the Atlantic ocean. Note the
break in the vertical scale at 1000 m.
The region of rapid change of
density (and temperature) is con-
centrated in the upper kilometre, in
the main thermocline, below which
the density is more uniform. The
flow of the moc is largely, but not
exactly, parallel to the isopycnals. 4

and 𝐶 is an empirical constant and 𝑏∗(𝑥, 𝑦) is given.5 Although this may be a little more relevant
than (21.2) for the real ocean, which of the three boundary conditions is chosen will not affect the
arguments below, and we use (21.2).

21.1.1 Two-dimensional Convection
We may usefully restrict attention to the two-dimensional problem, in latitude and height. This
is a poor model of the actual overturning circulation of the ocean, but the results do not depend
on this idealization. The incompressibility of the flow then allows one to define a streamfunction
such that

𝑣 = −𝜕𝜓
𝜕𝑧
, 𝑤 = 𝜕𝜓

𝜕𝑦
, 𝜁 = ∇2𝑥𝜓 = (

𝜕2𝜓
𝜕𝑦2
+ 𝜕
2𝜓
𝜕𝑧2
) , (21.4)

where 𝜁 is the vorticity in the meridional plane. We will omit the subscript 𝑥 on the Laplacian
operator where there is no ambiguity.

Taking the curl of Boussinesq equations of motion (21.1) then gives

𝜕∇2𝜓
𝜕𝑡
+ 𝐽(𝜓, ∇2𝜓) = 𝜕𝑏

𝜕𝑦
+ 𝜈∇4𝜓, (21.5a)

𝜕𝑏
𝜕𝑡
+ 𝐽(𝜓, 𝑏) = 𝜅∇2𝑏, (21.5b)

where 𝐽(𝑎, 𝑏) ≡ (𝜕𝑦𝑎)(𝜕𝑧𝑏) − (𝜕𝑧𝑎)(𝜕𝑦𝑏).

Nondimensionalization and scaling
We nondimensionalize (21.5) by formally setting

𝑏 = 𝛥𝑏 �̂�, 𝜓 = 𝛹�̂�, 𝑦 = 𝐿𝑦, 𝑧 = 𝐻𝑧, 𝑡 = 𝐿𝐻
𝛹
̂𝑡, (21.6)

where the hatted variables are nondimensional, 𝛥𝑏 is the temperature difference across the sur-
face, 𝐿 is the horizontal size of the domain, and 𝛹, and ultimately the vertical scale 𝐻, are to be
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Fig. 21.3 Sketch of sideways con-
vection. The fluid is differentially
heated and cooled along its top
surface, whereas all the other walls
are insulating.
The result is, typically, a small re-
gion of convective instability and
sinking near the coldest bound-
ary, with generally upwards mo-
tion elsewhere.6
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determined. Substituting (21.6) into (21.5) gives

𝜕∇̂2�̂�
𝜕 ̂𝑡
+ ̂𝐽(�̂�, ∇2�̂�) = 𝐻

3𝛥𝑏
𝛹2
𝜕�̂�
𝜕𝑦
+ 𝜈𝐿
𝛹𝐻
∇̂4�̂�, (21.7a)

𝜕�̂�
𝜕 ̂𝑡
+ ̂𝐽(�̂�, �̂�) = 𝜅𝐿

𝛹𝐻
∇̂2�̂�, (21.7b)

where ∇̂2 = (𝐻/𝐿)2𝜕2/𝜕𝑦2 + 𝜕2/𝜕𝑧2 and the Jacobian operator is similarly nondimensional. If we
now use (21.7b) to choose 𝛹 as

𝛹 = 𝜅𝐿
𝐻
, (21.8)

so that 𝑡 = 𝐻2 ̂𝑡/𝜅, then (21.7) becomes

𝜕∇̂2�̂�
𝜕 ̂𝑡
+ ̂𝐽(�̂�, ∇̂2�̂�) = Ra𝜎𝛼5 𝜕�̂�

𝜕𝑦
+ 𝜎∇̂4�̂�, (21.9)

𝜕�̂�
𝜕 ̂𝑡
+ ̂𝐽(�̂�, �̂�) = ∇̂2�̂�. (21.10)

It is possible to make different scaling choices, but they all lead to the appearance of the same non-
dimensional parameters, or combinations thereof, and the three that govern the behaviour of the
system are

Ra = (𝛥𝑏𝐿
3

𝜈𝜅
) , (the Rayleigh number), (21.11a)

𝜎 = 𝜈
𝜅
, (the Prandtl number), (21.11b)

𝛼 = 𝐻
𝐿
, (the aspect ratio). (21.11c)

Sometimes 𝐻 is used instead of 𝐿 in the Rayleigh number definition; we use 𝐿 here because it is
an external parameter. The Rayleigh number is a measure of the strength of the buoyancy forcing
relative to the viscous term, and in the ocean itwill be very large indeed, perhaps∼ 1024 ifmolecular
values are used.

For steady non-turbulent flows, and also perhaps for statistically steady flows, we can demand
that the buoyancy term in (21.9) is 𝒪(1). If it is smaller then the flow is not buoyancy driven, and
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Fig. 21.4 The density and streamfunction in two numerical simulations of two-dimensional sideways
convection, with Rayleigh numbers of 106 (top) and 109 (bottom). The imposed temperature at the top
linearly decreases from the centre outward, the side and bottom walls are insulating, and the Prandtl num-
ber is 10. The two density plots use the same colourmap, but the streamfunction plots do not. There is
a sinking plume at the centre, with a weaker circulation and a thinner thermocline at the higher Rayleigh
number.8

if it is larger there is nothing to balance it. Our demand can be satisfied only if the vertical scale of
the motion adjusts appropriately and, for 𝜎 = 𝒪(1), this suggests the scalings:7

𝐻 = 𝐿𝜎−1/5Ra−1/5 = (𝜅
2𝐿2
𝛥𝑏
)
1/5
, 𝛹 = Ra1/5𝜎−4/5𝜈 = (𝜅3𝐿3𝛥𝑏)1/5. (21.12a,b)

The vertical scale𝐻 arises as a consequence of the analysis, and the vertical size of the domain plays
no direct role. [For 𝜎 ≫ 1 we might expect the nonlinear terms to be small and if the buoyancy
term balances the viscous term in (21.9) the right-hand sides of (21.12) are multiplied by 𝜎1/5
and 𝜎−1/5. For seawater, 𝜎 ≈ 7 using the molecular values of 𝜅 and 𝜈. If small scale turbulence
exists, then the eddy viscosity will likely be similar to the eddy diffusivity and 𝜎 ≈ 1.] Numerical
experiments (an example is shown in Fig. 21.4) provide support for the scaling of (21.12), and a
few simple and robust points that have relevance to the real ocean emerge:

• Most of the box fills up with the densest available fluid, with a boundary layer in temperature
near the surface required in order to satisfy the top boundary condition. The boundary gets
thinner with decreasing diffusivity, consistent with (21.12). This is a diffusive prototype of
the oceanic thermocline.
• The horizontal scale of the overturning circulation is large, nearly the scale of the box.
• The downwelling regions (the regions of convection) are of smaller horizontal scale than the

upwelling regions, especially as the Rayleigh number increases.

Let us now try to explain some of the features in a simple and heuristic way, beginning with the
scale of the motion.
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Fig. 21.5 Two fluid parcels, of density 𝜌1 and 𝜌2 and initially at positions
𝑧1 and 𝑧2 respectively, are interchanged. If 𝜌2 > 𝜌1 then the final potential
energy is lower than the initial potential energy, with the difference being
converted into kinetic energy.
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21.1.2 The Relative Scale of Convective Plumes and Diffusive Upwelling
Why is the downwelling regionnarrower than the upwelling? The short answer is that highRayleigh
number convection is much more efficient than diffusive upwelling, so that the convective buoy-
ancy flux canmatch the diffusive flux only if the convective plumes cover a much smaller area than
diffusion.9 Suppose that the basin is initially filled with water of an intermediate temperature, and
that surface boundary conditions of a temperature decreasing linearly from low latitudes to high
latitudes are imposed. The deep water will be convectively unstable, and convection at high lat-
itudes (where the surface is coldest) will occur, quickly filling the abyss with dense water. After
this initial adjustment the deep, dense water at lower latitudes will be slowly warmed by diffusion,
but at the same time surface forcing will maintain a cold high latitude surface, thus leading to high
latitude convection. A steady state or statistically steady state is eventually reached with the deep
water having a slightly lower potential density than the surface water at the highest latitudes, and
so maintaining continual convection, but convection that takes place only at the highest latitudes.

To see this more quantitatively consider the respective efficiencies of the convective heat flux
and the diffusive heat flux. Consider an idealized re-arrangement of two parcels, initially with the
heavier one on top as illustrated in Fig. 21.5. The potential energy released by the re-arrangement,
𝛥𝑃 is given by

𝛥𝑃 = 𝑃final − 𝑃initial (21.13)
= 𝑔 [(𝜌1𝑧2 + 𝜌2𝑧1) − (𝜌1𝑧1 + 𝜌2𝑧2)] (21.14)
= 𝑔(𝑧2 − 𝑧1)(𝜌1 − 𝜌2) = 𝜌0𝛥𝑏𝛥𝑧, (21.15)

where 𝛥𝑧 = 𝑧2 − 𝑧1 and 𝛥𝑏 = 𝑔(𝜌1 − 𝜌2)/𝜌0.
The kinetic energy gained by this re-arrangement, 𝛥𝐾 is given by 𝛥𝐾 = 𝜌0𝑤2 and equating

this to (21.13) gives
𝑤2 = −𝛥𝑏𝛥𝑧. (21.16)

If the heavier fluid is initially on top then 𝜌2 > 𝜌1 and, as defined, 𝛥𝑏 < 0. The vertical convective
buoyancy flux per unit area, 𝐵𝑐, is given by 𝐵𝑐 = 𝑤𝛥𝑏 and using (21.16) we find

𝐵𝑐 = (−𝛥𝑏)3/2(𝛥𝑧)1/2. (21.17)

The upwards diffusive flux, 𝐵𝑑, per unit area is given by

𝐵𝑑 = 𝜅
𝛥𝑏
𝐻
, (21.18)

where𝐻 is the thickness of the layer over which the flux occurs. In a steady state the total diffusive
flux must equal the convective flux so that, from (21.17) and (21.18),

(−𝛥𝑏)3/2(𝛥𝑧)1/2𝛿 = 𝜅𝛥𝑏
𝐻
, (21.19)
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where 𝛿 is the fractional area over which convection occurs. If we set 𝛥𝑧 = 𝐻, and use (21.12a) we
find

(−𝛥𝑏)3/2 (𝜅
2𝐿2
𝛥𝑏
)
1/10
𝛿 = 𝜅 𝛥𝑏
(𝜅2𝐿2/𝛥𝑏)1/5

, (21.20)

giving

𝛿 = ( 𝜅
2

𝛥𝑏𝐿3
)
1/5
= (Ra𝜎)−1/5. (21.21)

For geophysically relevant situations this is a very small number, usually smaller than 10−5. Al-
though the details of the above calculation may be questioned (for example, the use of the same
buoyancy difference and vertical scale in the convection and the diffusion), the physical basis for
the result is transcendent: for realistic choices of the diffusivity the convection is much more effi-
cient than the diffusion and so will occur over a much smaller area.

21.1.3 Phenomenology of the Overturning Circulation

Nowater can be denser (or,more accurately, have a greater potential density) than the densestwater
at the surface. If the surface water is denser than the water at depth then it will be convectively
unstable and sink in a plume.10 The plume slowly entrains the warmer water that surrounds it,
and then spreads horizontally when it reaches the bottom or when its density becomes similar to
that of its surroundings. The presence of water denser than its surroundings creates a horizontal
pressure gradient, and the ensuing flow will displace any adjacent lighter fluid, and so the domain
fills with the densest available fluid. This process is a continuous one: the plumes take cold water
into the interior, where the water slowly warms by diffusion, and the source of cold water at the
surface is continuously replenished. If diffusion is small, the end result is that the potential density
of the fluid in the interior will be slightly less than that of the densest fluid formed at the surface.
(Because diffusion can act only to reduce extrema, no fluid in the interior can be colder than the
coldest fluid formed at the surface.)

However, the value at the surface is given by the boundary condition 𝑏(𝑥, 𝑦, 𝑧 = 0) = 𝑓(𝑥, 𝑦).
Thus, the interior cannot fill all the way to the surface with this cold water and there must be a
boundary layer connecting the cold, dense interior with the surface; its thickness 𝛿 is given by
the height scale of (21.12a); that is 𝛿 ∼ 𝐻 = (𝜅2𝐿2/𝛥𝑏)1/5. Such a strong boundary layer will
not necessarily be manifest in the velocity field, however, because the no-normal flow boundary
condition on the velocity field is satisfied by setting 𝜓 = 0 as a boundary condition to the elliptic
problem ∇2𝜓 = 𝜁, where 𝜁 is the prognostic variable in (21.5a), and this boundary condition has a
global effect on the velocity field.

Why is the horizontal scale of the circulation large? The circulation transfers heat meridion-
ally, and it is far more efficient to do this by a single overturning cell than by a multitude of small
cells; hence, although we cannot entirely eliminate the possibility that some instability will pro-
duce such small scales of motion, it seems likely the horizontal scale of the mean circulation will
be determined by the domain scale. (At low Rayleigh number we can in fact explicitly calculate an
approximate analytic solution for the flow, demonstrating this.) For higher Rayleigh number per-
turbation approaches fail and wemust resort to numerical solutions; these (e.g., Fig. 21.4), do show
the circulation dominated by a single overturning circulation rather than many small convective
cells over a large range of Rayleigh number.

Finally, it is important to realize that even for large diffusion and viscosity there is no stationary
solution: as soon as we impose a temperature gradient at the top the fluid begins to circulate, a
manifestation of the dictum that a baroclinic fluid is amoving fluid, encountered in Section 4.2. Put
simply, a temperature gradient leads a density gradient, which in turn leads to a pressure gradient.
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The pressure gradient leads to motion: viscosity cannot prevent that, for it can have an effect only
if the velocity is non-zero.

21.2 THE MAINTENANCE OF SIDEWAYS CONVECTION
In most conventional convection problems the fluid is heated from below, becomes buoyant and
rises, and is cooled at the top. In contrast, in sideways convection the heating and cooling occur at
the same level, and the conditions under which a circulation can be maintained are by no means
clear; our purpose here is to make them clearer. The energetic derivations of this section are but
an extension of Section 2.4.3, but now with starring roles for friction, diffusion and the boundary
conditions, and the reader may wish to review that section first. The derivations below are not
difficult, but they lead to powerful and perhaps counter-intuitive results that provide important
information about the overturning circulation of the real ocean. To begin, we rewrite the equations
of motion, (21.1), in a slightly different way, namely

𝜕𝒗
𝜕𝑡
+ (𝒇 + 2𝝎) × 𝒗 = −∇𝐵 + 𝑏𝐤 + 𝜈∇2𝒗, (21.22a)

𝜕𝑏
𝜕𝑡
+ ∇ ⋅ (𝑏𝒗) = �̇� = 𝐽 + 𝜅∇2𝑏, (21.22b)

∇ ⋅ 𝒗 = 0, (21.22c)

where 𝐵 = 𝒗2/2 + 𝜙 is the Bernoulli function for Boussinesq flow and �̇� (= �̇�) is the total rate of
heating (including diffusion, and absorbing constant factors such as heat capacity into its defini-
tion) with 𝐽 its non-diffusive component. The fluid occupies a finite volume, and in a steady state
⟨�̇�⟩ = 0, where the angle brackets denote a volume and time integration.

21.2.1 The Energy Budget
To obtain an energy budget we follow the procedure of Section 2.4.3. First take the dot product of
(21.22a) with 𝒗 to give

1
2
𝜕𝒗2
𝜕𝑡
= −∇ ⋅ (𝒗𝐵) + 𝑤𝑏 + 𝜈𝒗 ⋅ ∇2𝒗. (21.23)

Integrating over a domain bounded by stress-free rigid walls gives the kinetic energy equation
d
d𝑡
⟨1
2
𝒗2⟩ = ⟨𝑤𝑏⟩ − 𝜀, (21.24)

where angle brackets denote (for themoment) just a volume average and 𝜀 is the average dissipation
of kinetic energy (𝜀 = −𝜈 ⟨𝒗 ⋅ ∇2𝒗⟩ = 𝜈 ⟨𝝎2⟩), a positive definite quantity. Thus, in a statistically
steady state in which the left-hand side vanishes after time averaging, the dissipation of kinetic
energy is maintained by the buoyancy flux; that is, by a release of potential energy with light fluid
ascending and dense fluid descending.

We obtain a potential energy budget by using (21.22b) to write
D𝑏𝑧
D𝑡
= 𝑧D𝑏

D𝑡
+ 𝑏D𝑧

D𝑡
= 𝑧�̇� + 𝑏𝑤, (21.25)

and integrating this over the domain gives the potential energy equation
d
d𝑡
⟨𝑏𝑧⟩ = ⟨𝑧�̇�⟩ + ⟨𝑏𝑤⟩ . (21.26)

Subtracting (21.26) from (21.24) gives the energy equation
d
d𝑡
⟨1
2
𝒗2 − 𝑏𝑧⟩ = − ⟨𝑧�̇�⟩ − 𝜀. (21.27)
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21.2.2 Conditions for Maintaining a Thermally-driven Circulation
In a statistically steady state the left-hand side of (21.27) vanishes and the kinetic energy dissipation
is balanced by the buoyancy source terms; that is

⟨𝑧�̇�⟩ = −𝜀 < 0. (21.28)

The right-hand side (the term −𝜀) is negative definite, and to balance this the heating must be
negatively correlated with height. (Recall that ⟨�̇�⟩ = 0, and the origin of the 𝑧-coordinate is then
immaterial.) Thus, in order tomaintain a circulation inwhich kinetic energy is dissipated, the heating
(including diffusive heating) must occur, on average, at lower levels than the cooling. This result is
related to, but not quite the same as, a postulate due to Sandström, discussed below.

In the ocean the non-diffusive heating occurs predominantly at the surface, except for the neg-
ligible effects of hydrothermal vents. Thus, ⟨𝐽𝑧⟩ ≈ 0 and a kinetic-energy-dissipating circulation
can only be maintained, in the absence of mechanical forcing, if the diffusion is non-zero — in that
case heat may be diffused from the surface to depth, so effectively providing a deep heat source. In
the atmosphere, the heating is mostly at the surface and cooling is mostly in the mid-troposphere
so that ⟨𝑧�̇�⟩ < 0; thus, (21.28) is readily satisfied and the circulation is not restricted.

♦ Maintaining a steady baroclinic circulation
By a rather different method — and one closer to a suggestion of Sandström dating from 1908 —
we can obtain a result that is different from but related to (21.28).11 Using (4.37) and (21.22a), the
circulation in a Boussinesq system obeys

𝐶 = ∮𝒗 ⋅ d𝒓, D𝐶
D𝑡
= ∮𝑏𝐤 ⋅ d𝒓 + ∮𝑭 ⋅ d𝒓, (21.29a,b)

where𝐶 is the circulation, d𝒓 is a path element, and𝑭 represents the frictional terms. (TheCoriolis
parameter plays no role in this argument because the Coriolis force does no work, and 𝑓 may be
set to zero without loss of generality.) Now we may write the rate of change of circulation in the
form

D𝐶
D𝑡
= ∮(𝜕𝒗
𝜕𝑡
+ 𝒗 ⋅ ∇𝒗) ⋅ d𝒓 = ∮(𝜕𝒗

𝜕𝑡
+ 𝝎 × 𝒗) ⋅ d𝒓, (21.30)

because the integral of the potential term that arises when going to the last expression vanishes. Let
us assume the flow is steady, so that 𝜕𝒗/𝜕𝑡 vanishes. Let us further choose the path of integration
to be a streamline, which since the flow is steady is also a parcel trajectory. The second term on the
right-most expression of (21.30) then also vanishes and (21.29b) becomes

∮𝑏 d𝑧 = −∮𝑭 ⋅ d𝒓 = −∮ 𝑭
|𝒗|
⋅ 𝒗 d𝑟, (21.31)

where the last equality follows because the path is everywhere parallel to the velocity. Let us now
assume that the friction retards the flow, and that ∮𝑭 ⋅ 𝒗/|𝒗| d𝑟 < 0. (One form of friction that
has this property is linear drag, 𝑭 = −𝐶𝒗 where 𝐶 is a constant. The property is similar to, but not
the same as, the property that the friction dissipates kinetic energy over the circuit.) Making this
assumption, if we integrate the term on the left-hand side by parts we obtain

∮𝑧 d𝑏 < 0. (21.32)

Now, because the integration circuit in (21.32) is a fluid trajectory, the change in buoyancy d𝑏 is
proportional to the heating of a fluid element as it travels the circuit; in the notation of (21.22b),
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d𝑏 = �̇� d𝑡, where the heating, �̇�, includes diffusive effects. Thus, the inequality implies that the net
heating must be negatively correlated with height: that is, the heating must occur, on average, at a
lower level than the cooling in order that a steady circulationmay bemaintained against the retarding
effects of friction.

A similar result can be obtained for a compressible fluid. From Equations (4.43)–(4.45) on
page 151 we write the baroclinic circulation theorem as

D𝐶
D𝑡
= ∮𝑝 d𝛼 + ∮𝑭 ⋅ d𝒓 = ∮𝑇 d𝜂 + ∮𝑭 ⋅ d𝒓, (21.33)

where 𝜂 is the specific entropy. Then, by precisely the same arguments as led to (21.32), we are led
to the requirements that

∮𝑇 d𝜂 > 0 or equivalently ∮𝑝 d𝛼 > 0. (21.34a,b)

Equation (21.34a) means that parcels must gain entropy at high temperatures and lose entropy at
low temperatures; similarly, from (21.32b), a parcel must expand (d𝛼 > 0) at high pressures and
contract at low pressures.

For an ideal gas we can put these statements into a form analogous to (21.32) by noting that
d𝜂 = 𝑐𝑝(d𝜃/𝜃), where 𝜃 is potential temperature, and using the definition of potential temperature,
(1.105). With these we have

∮𝑇 d𝜂 = ∮ 𝑐𝑝
𝑇
𝜃

d𝜃 = ∮ 𝑐𝑝 (
𝑝
𝑝𝑅
)
𝜅
d𝜃, (21.35)

and (21.34a) becomes

∮𝑐𝑝 (
𝑝
𝑝𝑅
)
𝜅
d𝜃 > 0. (21.36)

Because the path of integration is a fluid trajectory, d𝜃 is proportional to the heating of a fluid
element. Thus, as with the Boussinesq result, (21.36) implies that the heating (the potential tem-
perature increase) must occur at a higher pressure than the cooling in order that a steady circulation
may be maintained against the retarding effects of friction.

These results may be understood by noting that the heating must occur at a higher pressure
than the cooling in order that work may be done, the work being necessary to convert potential
energy into kinetic energy to maintain a circulation against friction. Intuitively, if the heating is
below the cooling, then the heated fluid will expand and become buoyant and rise, and a steady
circulation between heat source and heat sink can readily be imagined. On the other hand, if the
heating is above the cooling there is no obvious pathway between source and sink.

Intuitive as these results may be, the conditions required to prove (21.32) and (21.36) are much
more restrictive than those needed to prove (21.28). To prove the former, we must assume that
the flow is absolutely steady, and that streamlines form a closed path, and that the friction has
retarding properties. The second of these conditions is not generally satisfied in three dimensions,
even when the flow is steady. Furthermore, one cannot prove that Newtonian viscosity (𝜈∇2𝒗) will
always act to retard the flow. On the other hand, (21.28) provides a condition for the maintenance
of a statistically steady circulation, assuming only that the friction acts to dissipate kinetic energy.
In any case, it is clear from all of the above results that the overturning circulation is greatly affected
by the relative pressures at the locations of the heating and cooling, and this is called Sandström’s
effect. In all of these cases, the heating must be taken to include diffusive effects; if the molecular
diffusivity is small and the heating is at the surface we can further constrain the flow, as we now
see.
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21.2.3 Surface Fluxes and Non-turbulent Flow at Small Diffusivities
Suppose that the only heating to the fluid is via diffusion through the upper surface; that is 𝐽 = 0 in
(21.22b). Is a circulation possible? If the diffusivity is finite then heat can diffuse into the fluid and
thereby potentially provide a difference in altitude between the heating and the cooling. However,
as 𝜅 → 0 this mechanism ceases to operate and we therefore expect that the left-hand sides of
(21.28) and (21.32) will go to zero, and the circulation will cease. In what follows we put this
argument on a more rigorous footing: we will show that as 𝜅 → 0 the kinetic energy dissipation
also goes to zero, and therefore the flow is ‘non-turbulent’, the meaning of which will be made
clearer below.

Assuming a statistically steady state, integrating (21.22b) horizontally gives

𝜕𝑏𝑤
𝜕𝑧
= 𝜅𝜕
2𝑏
𝜕𝑧2
, (21.37)

where an overbar indicates a horizontal average. Integrating this equation up from the bottom
(where there is no flux) to a level 𝑧 gives

𝑤𝑏 − 𝜅𝑏𝑧 = 0 (21.38)

at every level in the fluid. The two terms on the left-hand side together give rise to the total buoy-
ancy flux through the level 𝑧, and the flux must vanish because there is no buoyancy input except
at the surface. If we integrate this vertically we have

⟨𝑤𝑏⟩ = 𝐻−1𝜅 [𝑏(0) − 𝑏(−𝐻)] , (21.39)

where the angle brackets denote an average over the entire volume. In the limit 𝜅 → 0, the in-
tegrated advective buoyancy flux will vanish, because the term 𝑏(0) − 𝑏(−𝐻) remains finite. This
follows because 𝑏 is conserved on parcels, except for the effects of diffusion, which can only act to
reduce the value of extrema in the fluid. Thus, 𝑏(0)−𝑏(−𝐻) can only be as large as the temperature
difference at the surface, which is set by the boundary conditions.

Now consider the kinetic energy budget. Using (21.24) and (21.39) we have in a statistically
steady state

𝜀 = 𝐻−1𝜅 [𝑏(0) − 𝑏(−𝐻)] . (21.40)

Because, as noted above, the buoyancy difference on the right-hand side is bounded, the kinetic
energy dissipation must go to zero if the thermal diffusivity goes to zero; that is, 𝜀 → 0 as 𝜅 → 0
and in particular 𝜀 < 𝜅𝛥𝑏/𝐻 where 𝛥𝑏 is the maximum buoyancy difference at the surface. We
may also consider the limit (𝜅, 𝜈) → 0 with a fixed Prandtl number, 𝜎 ≡ 𝜈/𝜅, and in this limit the
energy dissipation also vanishes with 𝜅.

Finally, let us see how the surface buoyancy is related to the buoyancy flux, for any value of
𝜅. Multiplying (21.22b) (with 𝐽 = 0) by 𝑏 and integrating over the domain gives the buoyancy
variance equation

1
2
d⟨𝑏2⟩
d𝑡
= 𝜅 [ �𝑏𝜕𝑏
𝜕𝑧
|
𝑧=0
− ⟨|∇𝑏|2⟩] . (21.41)

We have assumed that the normal derivative of 𝑏 vanishes on all surfaces except the top one (𝑧 = 0)
and an overbar denotes a horizontal average. In a statistically steady state,

�𝑏𝜕𝑏
𝜕𝑧
|
𝑧=0
= ⟨|∇𝑏|2⟩ , (21.42)
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where the overbar and angle brackets now also imply a time average. The right-hand side is positive
definite, and thus there must be a positive correlation between 𝑏 and 𝜕𝑏/𝜕𝑧, meaning that there is
a heat flux into the fluid where it is hot, and a heat flux out of the fluid where it is cold. This result
holds no matter whether the upper boundary condition is a condition on 𝑏 or on 𝜕𝑏/𝜕𝑧.

Interpretation
The result encapsulated by (21.40) means that, for a fluid forced only at the surface by buoyancy
forcing, as the diffusivity goes to zero so does the energy dissipation. For a fluid of finite viscosity
the vorticity in the fluid must then go to zero, because 𝜀 = 𝜈 ⟨𝝎2⟩; this in turn means that the flow
cannot be baroclinic, because baroclinicity generates vorticity, even in the presence of viscosity
(Section 4.2). An even more interesting result follows for a fluid with small viscosity. In turbu-
lent flow, the energy dissipation at high Reynolds number is not a function of the viscosity; if the
viscosity is reduced, the cascade of energy to smaller scales merely continues to still smaller scale,
generating vorticity at these smaller scales, and the energy dissipation is unaltered, remaining fi-
nite even in the limit 𝜈 → 0. In contrast, for a fluid heated and cooled only at the upper surface,
the energy dissipation tends to zero as 𝜅 → 0, whether or not one is in the high-Reynolds number
limit. This means that vorticity cannot be generated at the viscous scales by the action of a turbu-
lent cascade, as that would lead to energy dissipation. Effectively, the result prohibits an ocean that
is forced only at the surface by a buoyancy flux from having an ‘eddy viscosity’ that would enable
the fluid to efficiently dissipate energy, and if there is no small scale motion producing an eddy
viscosity there can be no eddy diffusivity either. Thus, such an ocean is non-turbulent. This is a
rather different picture from that of the real ocean, where there is some dissipation of energy in
the interior because of breaking gravity waves, and dissipation at the boundary in Ekman layers,
and the eddy diffusivity is needed for there to be a non-negligible buoyancy-driven meridional
overturning circulation.

Of course, thermal forcing in the ocean is in part an imposed flux, coming from radiation
among other things, and this penetrates below the surface. However, this makes little physical
difference to the argument, provided that this forcing remains confined to the upper ocean. If so,
then for any level below this forcing we still have the result (21.38), and the final result (21.40)
holds, assuming that the range of temperatures produced by the forcing is still finite.

21.2.4 The Importance of Mechanical Forcing
The results of (21.28) and (21.40) do not, strictly speaking, prohibit there from being a thermal
circulation, with fluid sinking at high latitudes and rising at low, even for zero diffusivity. However,
in the absence of any mechanical forcing, this circulation must be laminar, even at high Rayleigh
number, meaning that flow is not allowed to break in such a way that energy can be dissipated —
a very severe constraint that most flows cannot satisfy. The scalings (21.12) further suggest that
the magnitude of the circulation in fact scales (albeit nonlinearly) with the size of the molecular
diffusivity, and if these scalings are correct the circulation will in fact diminish as 𝜅 → 0. For small
diffusivity, the solution most likely to be adopted by the fluid is for the flow to become confined
to a very thin layer at the surface, with no abyssal motion at all, which is completely unrealistic
vis-à-vis the observed ocean. Thus, the deep circulation of the ocean cannot be considered to be
wholly forced by buoyancy gradients at the surface.

Supposewe add amechanical forcing,𝑭, to the right-hand side of (21.22a); thismight represent
wind forcing at the surface, or tides. The kinetic energy budget becomes

𝜀 = ⟨𝑤𝑏⟩ + ⟨𝑭 ⋅ 𝒗⟩ = 𝐻−1𝜅[𝑏(0) − 𝑏(−𝐻)] + ⟨𝑭 ⋅ 𝒗⟩ . (21.43)

In this case, even for 𝜅 = 0, there is a source of energy and therefore turbulence (i.e., a dissipative
circulation) can be maintained. The turbulent motion at small scales then provides a mechanism
of mixing and so can effectively generate an ‘eddy diffusivity’ of buoyancy. Given such an eddy
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diffusivity, wind forcing is no longer necessary for there to be an overturning circulation. Therefore,
it is useful to think of mechanical forcing as having two distinct effects:
(i) The wind provides a stress on the surface that may directly drive the large-scale circulation,

including the overturning circulation. (An example of this is discussed in Section 21.6.)
(ii) Both tides and the wind provide a mechanical source of energy to the system that allows the

flow to become turbulent and so provides a source for an eddy diffusivity and eddy viscosity.
In either case, wemay conclude that the presence ofmechanical forcing is necessary for there to

be an overturning circulation in the world’s oceans of the kind observed. Let us first suppose that
the most important effect of the wind is that it enables there to be an eddy diffusivity that is much
larger than the molecular one; the eddy diffusivity enables large volumes of the ocean to become
mixed, so allowing a buoyancy-driven overturning circulation (a ‘thermohaline circulation’) to
exist.

21.2.5 The Mixing-driven Ocean
Before moving on to other matters, let’s make a connection to the scaling for the overturning circu-
lation discussed in Section 20.5.1. In that section we considered the planetary-geostrophic equa-
tions,

𝒗 ⋅ ∇𝑏 = 𝜅∇2𝑏, ∇ ⋅ 𝒖 + 𝜕𝑤
𝜕𝑧
= 0, 𝒇 × 𝒖 = −∇𝜙, 𝑏 = 𝜕𝜙

𝜕𝑧
, (21.44a,b,c,d)

and obtained, after a little algebra, the scalings for vertical velocity and thermocline thickness,

𝑊 = 𝜅2/3 (𝛽𝛥𝑏
𝑓2𝐿
)
1/3
, 𝛿 = 𝜅1/3 ( 𝑓

2𝐿
𝛽𝛥𝑏
)
1/3
. (21.45)

These are different in detail from the Rossby scalings, (21.12), but they also require a finite dif-
fusivity to produce a circulation and a thermocline. The Sandström effect applies, as it must, to
oceanically relevant equations.

In order for the scales given in (21.45) to be representative of those observed in the real ocean,
we must use an eddy diffusivity for 𝜅. Using 𝑓 = 10−4 s−1, 𝛽 = 10−11m−1 s−1, 𝐿 = 5 × 106m, 𝑔 =
10ms−2, 𝜅 = 10−5m2 s−1, 𝛥𝑏 = −𝑔𝛥𝜌/𝜌0 = 𝑔𝛽𝑇𝛥𝑇 and 𝛥𝑇 = 10K we find the not unreasonable
values of 𝛿 ≈ 150m and 𝑊 = 10−7ms−1, albeit 𝛿 is rather smaller than the thickness of the
observed thermocline. However, if we take the molecular value of 𝜅 ≈ 10−7m2 the values of𝑊
and 𝛿 are unrealistically small (although still non-zero). Evidently, if the deep circulation of the
ocean is buoyancy (ormixing) driven, it must take advantage of turbulence that enhances the small
scale mixing and produces an eddy diffusivity.

21.3 ♦ SIMPLE BOX MODELS
This section is marked with a black diamond not because it is advanced; rather, it is a little pe-
ripheral to our main development. The purist may consider this section a diversion away from a
consideration of the fluid dynamical properties of the ocean, and the content implied by the title
of this book, but such box models have been quite fecund and an evident source of qualitative un-
derstanding, and thus find a place in our discussion, if not in our canon. Readers may skim this
section without fear of disapprobation.

Even though they are far simpler than the real ocean, the fluid dynamical models of the previ-
ous sections are still quite daunting. The analysis that can be performed is either very specific and
of little generality, for example the construction of solutions at low Rayleigh number, or it is a very
general form such as scaling or energetic arguments. Models based on the fluid dynamical equa-
tions do not easily allow for the construction of explicit solutions in the parameter regime — high
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Fig. 21.6 A two-box model of the
overturning circulation of the ocean.
The shaded walls are porous, and each
box is well mixed by its stirrer. Tem-
perature and salinity evolve by way of
fluid exchange between the boxes via
the capillary tube and the overflow,
and by way of relaxation with the two
infinite reservoirs at (+𝑇∗, +𝑆∗) and
(−𝑇∗, −𝑆∗).

Ψ

Ψ

Rayleigh and Reynolds numbers — of interest. It is therefore useful to consider an extreme simpli-
fication of the overturning circulation, namely box models. These are caricatures of the circulation,
constructed by dividing the ocean into a small number of boxes with simple rules determining the
transport of fluid properties between them.12

21.3.1 A Two-box Model
Consider two boxes as illustrated in Fig. 21.6. Each box is well-mixed and has a uniform temper-
ature and salinity, 𝑇1, 𝑇2 and 𝑆1, 𝑆2. The boxes are connected with a capillary tube at the bottom
along which the flow is viscous, obeying Stokes’ Law. That is, the flow along the tube is propor-
tional to the pressure gradient which, because the flow is hydrostatic, is proportional to the density
difference between the two boxes. An overflow at the top keeps the upper surfaces of the two boxes
at the same level. Thus, the circulation, 𝛹, is given by

𝛹 = 𝐴(𝜌1 − 𝜌2), (21.46)

where 𝜌1 and 𝜌2 are the densities of the fluids in the two boxes and 𝐴 is a constant. The boxes are
enclosed by porous walls beyond which are reservoirs of constant temperature and salinity, and we
are at liberty to choose the origin of the temperature scale such that the two reservoirs are at +𝑇∗
and −𝑇∗, and similarly for salinity. Thus, heat and salt are transferred into and out of the boxes as
represented by simple linear laws and we have

d𝑇1
d𝑡
= 𝑐(𝑇∗ − 𝑇1) − |𝛹|(𝑇1 − 𝑇2),

d𝑇2
d𝑡
= 𝑐(−𝑇∗ − 𝑇2) − |𝛹|(𝑇2 − 𝑇1),

d𝑆1
d𝑡
= 𝑑(𝑆∗ − 𝑆1) − |𝛹|(𝑆1 − 𝑆2),

d𝑆2
d𝑡
= 𝑑(−𝑆∗ − 𝑆2) − |𝛹|(𝑆2 − 𝑆1).

(21.47)

The advective transfer is independent of the sign of the circulation, because it occurs through both
the capillary tube and the overflow. From these equations it is easy to show that the sum of the
temperatures, 𝑇1+𝑇2 decays to zero and is uncoupled from the difference, and similarly for salinity.
Defining �̂� = (𝑇1 − 𝑇2)/(2𝑇∗) and 𝑆 = (𝑆1 − 𝑆2)/(2𝑆∗), we obtain

d�̂�
d𝑡
= 𝑐(1 − �̂�) − 2|𝛹|�̂�, d𝑆

d𝑡
= 𝑑(1 − 𝑆) − 2|𝛹|𝑆. (21.48a,b)

Using a linear equation of state of the form 𝜌 = 𝜌0(1 − 𝛽𝑇𝑇 + 𝛽𝑆𝑆) (where the variables are dimen-
sional) the circulation (21.46) becomes

𝛹 = 2𝜌0𝑇∗𝛽𝑇𝐴(−�̂� +
𝛽𝑆𝑆∗
𝛽𝑇𝑇∗
𝑆) . (21.49)
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Finally, nondimensionalizing time using 𝜏 = 𝑐𝑡, the equations of motion become

d�̂�
d𝜏
= (1 − �̂�) − |𝛷|�̂�, d𝑆

d𝜏
= 𝛿(1 − 𝑆) − |𝛷|𝑆, 𝛷 = −𝛾(�̂� − 𝜇𝑆), (21.50a,b,c)

where 𝛷 = 2𝛹/𝑐 and the three parameters that determine the behaviour of the system are

𝛾 = 4𝜌0𝑇
∗𝛽𝑇𝐴
𝑐
, 𝛿 = 𝑑

𝑐
, 𝜇 = 𝛽𝑆𝑆

∗

𝛽𝑇𝑇∗
. (21.51)

The parameter 𝛾 measures the overall strength of the forcing in determining the strength of the
circulation, and is the ratio of a relaxation time scale to an advective time scale. The parameter 𝛿 is
the ratio of the reciprocal time constants of temperature and salinity relaxation, and 𝜇 is a measure
of the ratio of the effect of the salinity and temperature forcings on the density. Salinity transfer
will normally be much slower than heat transfer so that 𝛿 ≪ 1, whereas if salinity and temperature
are both to play a role in the dynamics we need 𝜇 = 𝒪(1). We might also expect both advection
and relaxation to be important if 𝛾 = 𝒪(1), and this will depend on the properties of the capillary
tube.

Interpretation
Although the above model describes a potentially real system, one that might be constructed in
the laboratory, it is the analogy to aspects of the ocean circulation that interests us here. To make
the analogy, we suppose that one box represents the entire high-latitude ocean and the other the
entire low-latitude ocean, and the capillary tube and the overflow carry the overturning circulation
between them. The reservoirs at ±𝑇∗ and ±𝑆∗ represent the atmosphere. Typically, we would
choose the low latitudes to be both heated and salted (the latter because of the low rainfall and
high evaporation in the subtropics) and the high latitudes to be cooled and freshened by rainfall.
Thus, 𝑇∗ and 𝑆∗ have the same sign, and they force the circulation in opposite directions.

It is a common fluid-dynamical experience that the behaviour of a highly-truncated system has
little resemblance to that of the corresponding continuous system, and so we expect the model to
be only a cartoon of the ocean circulation. For example, we have restricted the circulation to be
of basin scale, and the parameterization of the intensity of the overturning circulation by (21.50c)
must be regarded with caution, because it represents a frictionally controlled flow rather than a
nearly inviscid geostrophic flow. Nevertheless, observations and numerical simulations do indicate
that the overturning circulation does have a relatively simple vertical and horizontal structure: the
circulation in the North Atlantic is similar to that of a single cell, for example, indicating that an
appropriate low-order model may be useful.

Onemight also question the oceanic appropriateness of the linear relaxation terms. For temper-
ature, the bulk aerodynamic formulae often used to parameterize air–sea fluxes do have a similar
form, but the freshening of seawater by rainfall is more akin to an imposed negative flux of salinity,
and evaporation is a function of temperature. An alternative might be to impose an effective salt
flux so that

d
d𝑡
(𝑆1 − 𝑆2) = 2𝐸 − 2|𝛹|(𝑆1 − 𝑆2), (21.52)

where 𝐸 is an imposed, constant, effective rate of salt exchange with the atmosphere. After nondi-
mensionalization, using 𝐸/𝑐 to nondimensionalize salt, (21.50b) is replaced by

d𝑆
d𝜏
= 1 − |𝛷|𝑆. (21.53)

Another aspect of the model that is oceanographically questionable is that the model assumes
that the water masses can be mixed below the surface. Thus, when water enters one box from the
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Fig. 21.7 Left panel: graphical solution of the two-box model. The straight line has unit slope
and passes through the origin, and is therefore 𝛷 itself. The curved lines plot the function 𝑓(𝛷) as
given by the right-hand side of (21.54). The intercepts of the two are solutions to the equation. The
parameters for the three curves are: a, 𝛾 = 5, 𝛿 = 1/6, 𝜇 = 1.5; b, 𝛾 = 1, 𝛿 = 1/6, 𝜇 = 1.5; c, 𝛾 = 5,
𝛿 = 1/6, 𝜇 = 0.75. Right panel: the same except with 𝛷2 in place of |𝛷| on the rhs of (21.54).

other it immediately mixes with its surroundings. Without the stirrer this would not occur and
the equations of the box model would not represent a real system. In the real ocean, most of the
mixing ofwatermasses happens near the surface (in themixed layer) and near lateral boundaries or
regions of steep topography. Elsewhere in the ocean, mixing is quite small, and probably far from
sufficient to mix a large volume of water in the advective or relaxation times of the box model.
Having noted all these objections, we will put them aside and continue with an analysis of the
model.

Solutions
Equilibria occur when the time-derivatives vanish, and the circulation then satisfies

𝛷 = 𝑔(𝛷) ≡ 𝛾( −1
1 + |𝛷|
+ 𝜇
1 + |𝛷|/𝛿

) . (21.54)

A graphical solution of this is obtained as the intercept of the right-hand sidewith the left-hand side,
the latter being a straight line through the origin at an angle of 45°, and this is plotted in Fig. 21.7.
Perhaps the most interesting aspect of the solutions is that they exhibit multiple equilibria; that is,
there are multiple steady solutions with the same parameters.

Evidently, for a range of parameters three solutions are possible, whereas for others only one
solution exists. Although a fairly complete analysis of the nature of the steady solutions is possible,
it is instructive to consider the special case with 𝛾 ≫ 1 and 𝛿 ≪ 1This corresponds to the situation
in which the advective time scale is shorter than the diffusive one and temperature relaxation is
much faster than salt relaxation. Using the graphical solution as a guide, two of the solutions are
then close to the origin, with 𝛷 ≪ 1, and satisfy

𝛷 ≈ 𝛾(−1 + 𝜇𝛿
𝛿 + |𝛷|
) , (21.55)

giving, for small |𝛷| and 𝜇 > 1,
𝛷 ≈ ±[𝛿(𝜇 − 1)]. (21.56)

The positive solution, with flow in the capillary tube from box 1 to box 2, is salinity driven —
driven by the density gradient of the same sign as that caused by the salinity, with the density
gradient due to temperature opposing the motion. That is, box 1 is denser than box 2 because it
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Fig. 21.8 A three-box model. Each box con-
tains fluid with uniform values of tempera-
ture and salinity, each exchanges fluidwith its
neighbour, and in each the temperature and
salinity are relaxed toward fixed values.

is more saline, even though it is also warmer. The negative solution is thermally driven, with the
flow in the capillary tube going from the denser (cold and fresh) box 2 to the lighter (warm and
salty) box 1. However, this solution is unstable, and any small perturbation will amplify and the
system will move away from this solution. Solving for temperature and salinity we find that 𝑇 ≈ 1
(i.e., it is close to its relaxation value and hardly altered by advection), and 𝑆 ≈ 1/𝜇.

The third solution has a circulation far from the origin, and the balance in (21.54) is between
the left-hand side and the first term on the right. In the limiting case we find

𝛷 ≈ −√𝛾. (21.57)

This solution has a density gradient dominated by the temperature effect: the temperature differ-
ence is 𝑇 ≈ 1/√𝛾whereas the salinity difference is 𝑆 ≈ 𝛿/√𝛾, and thus its effect on density is much
smaller.

21.3.2 ♦ More Boxes
More boxes can be added in a variety ofways and, now forgoing an easy relevance to a laboratory ap-
paratus, one such is illustrated in Fig. 21.8. The three boxes represent the mid- and high-latitude
Northern Hemisphere, the mid- and high-latitude Southern Hemisphere, and the equatorial re-
gions. Each of the three boxes can exchange fluid with its neighbour, and each is also in contact
with a reservoir and subject to a relaxation to a fixed value of temperature and salinity, (𝑇∗𝑠 , 𝑆∗𝑠 ),
(𝑇∗𝑒 , 𝑆∗𝑒 ) and (𝑇∗𝑛 , 𝑆∗𝑛 ). Then, with obvious notation, we infer the equations of motion for tempera-
ture

d𝑇𝑠
d𝑡
= 𝑐(𝑇∗𝑠 − 𝑇𝑠) − |𝛹𝑠|(𝑇𝑠 − 𝑇𝑒),

d𝑇𝑛
d𝑡
= 𝑐(𝑇∗𝑛 − 𝑇𝑛) − |𝛹𝑛|(𝑇𝑛 − 𝑇𝑒),

d𝑇𝑒
d𝑡
= 𝑐(𝑇∗𝑒 − 𝑇𝑒) − |𝛹𝑠|(𝑇𝑒 − 𝑇𝑠) − |𝛹𝑛|(𝑇𝑒 − 𝑇𝑛), (21.58)

and similarly for salt, with flow rates given by the density differences

𝛹𝑠 = 𝐴𝜌0[−𝛽𝑇(𝑇𝑠 − 𝑇𝑒) + 𝛽𝑆(𝑆𝑠 − 𝑆𝑒)], 𝛹𝑛 = 𝐴𝜌0[−𝛽𝑇(𝑇𝑛 − 𝑇𝑒) + 𝛽𝑆(𝑆𝑛 − 𝑆𝑒)]. (21.59)

These equations may be nondimensionalized and reduced to four prognostic equations for the
quantities 𝑇𝑒 − 𝑇𝑛, 𝑇𝑒 − 𝑇𝑠, 𝑆𝑒 − 𝑆𝑛, 𝑆𝑒 − 𝑆𝑠. Not surprisingly, multiple equilibria can again be
found. One interesting aspect is that stable asymmetric solutions arise with symmetric forcing
(𝑇∗𝑠 = 𝑇∗𝑛 , 𝑆∗𝑠 = 𝑆∗𝑛 ). These effectively have a pole-to-pole circulation, illustrated in the upper row
of Fig. 21.9. Such a circulation can be thought of as the superposition of a thermal circulation in
one hemisphere and a salinity-driven circulation in the other.
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Fig. 21.9 Four solutions to the three-box model with the symmetric forcing 𝑆∗𝑠 = 𝑆∗𝑛 and 𝑇∗𝑛 =
𝑇∗𝑠 . The two solutions on the top row have an asymmetric, ‘pole-to-pole’, circulation whereas the
solutions on the bottom row are symmetric.13

The box models are useful because they are suggestive of behaviour that might occur in real
fluid systems, and because they provide a means of interpreting behaviour that does occur in more
complete numericalmodels and perhaps in the real world. However, they are by nomeans good ap-
proximations of the real equations of motion and without other supporting evidence the solutions
found in box models should not be regarded as representing real solutions of the fluid equations
for the world’s oceans.14 Indeed, the mechanism for the observed pole-to-pole circulation in the
real ocean may be quite different from that of the box models — see the sections beginning with
sec:windmoc.

21.4 A LABORATORY MODEL OF THE ABYSSAL CIRCULATION
We now return to a more fluid dynamical description of the deep ocean circulation, and consider
two simple, closely related,models that are relevant to aspects of the deep circulation, still assuming
it to be buoyancy- or mixing-driven. The first, which we consider in this section, is a laboratory
model, originally envisioned as being a prototype for the deep circulation. The second model,
considered in the following sections, is explicitly a model of the deep circulation. Both models
are severe idealizations that describe only limited aspects of the circulation, but they are both very
helpful tools that enable us to understand more complete models and, in part, the real circulation
itself.

21.4.1 Set-up of the Laboratory Model
Let us consider flow in a rotating tank, as illustrated in Fig. 21.10. The fluid is confined by verti-
cal walls to occupy a sector, and the entire tank rotates anticlockwise when viewed from above,
like the Northern Hemisphere. When the fluid is stationary in the rotating frame, the fluid slopes
up toward the outer edge of the tank and the balance of forces in the rotating frame is between
a centrifugal force pointing outwards and the pressure gradient due to the sloping fluid pointing
inwards. In the inertial frame of the laboratory itself, the pressure gradient pointing inwards pro-
vides a centripetal force that causes the fluid to accelerate toward the centre of the tank, resulting
in a circular motion. (Recall that steady circular motion is always accompanied by an acceleration
toward the centre of the circle.)

This set-up, and the accompanying theory, have become known as the Stommel–Arons–Faller
model.15 The motivation of the construct is clear, in that the sector represents an ocean basin.
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Ω
Ω Fig. 21.10 Stommel–Arons–Faller

rotating tank experiment. Left: A plan
view, with the fluid in the sector at left.
Right: Side view. The free surface of
the fluid slopes up with increasing ra-
dius, giving a balance between the cen-
trifugal force pointing outwards and
the pressure force pointing inwards.
Small pipes (not shown) provide mass
sources and sinks.

However, rather than driving the fluid with wind or by differential heating, we drive it with local-
ized mass sources and sinks, for example from small pipes inserted into the tank. If an oceanic
analogy is desired, the mass source might be thought of as representing a sources of deep abyssal
water due to deep convection. The oceanic analogy is not perfect but it helps build intuition about
the real ocean.

21.4.2 Dynamics of Flow in the Tank
Let us assume that the motion of the fluid in the tank is sufficiently weak that its Rossby number
is small, and that it obeys the shallow water planetary-geostrophic equations, namely

𝒇0 × 𝒖 = −𝑔∇ℎ + 𝛺2𝑟 ̂𝒓 + 𝑭, (21.60a)
𝜕ℎ
𝜕𝑡
+ ∇ ⋅ (𝒖ℎ) = 𝑆, (21.60b)

where 𝒖 = (𝑣𝑟, 𝑣𝜃) is the horizontal velocity in cylindrical (𝑟, 𝜃) coordinates, ̂𝒓 is a unit vector in the
direction of increasing 𝑟, 𝑭 represents frictional terms (which we will suppose are small except in
boundary layers) and 𝑆 represents mass sources. These two equations yield the potential vorticity
equation,

D
D𝑡
(𝑓0
ℎ
) = curl𝑧𝑭
ℎ
− 𝑓0𝑆
ℎ2
. (21.61)

Let us write the height field as
ℎ = 𝐻(𝑟, 𝑡) + 𝜂(𝑟, 𝜃, 𝑡), (21.62)

where𝐻(𝑟, 𝑡) is the height field corresponding to the rest state of the fluid (in the rotating frame)
and 𝜂 the perturbation. Thus, from (21.60a)

0 = −𝑔∇𝐻 + 𝛺2𝑟 ̂𝒓, (21.63)

which gives

𝐻 = 𝛺
2𝑟2
2𝑔
+ �̂�(𝑡), (21.64)

where �̂� is a measure of the overall mass of the fluid. Its rate of change is determined by the mass
source

d�̂�
d𝑡
= ⟨𝑆⟩ , (21.65)

the angle brackets indicating a domain average. The equations of motion (21.60) become

𝒇0 × 𝒖 = −𝑔∇𝜂 + 𝑭, (21.66a)
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𝜕
𝜕𝑡
(𝜂 + 𝐻) + ∇ ⋅ [𝒖(𝜂 + 𝐻)] = 0. (21.66b)

Equation (21.66a) tells us that, away from frictional regions, the velocity is in geostrophic balance
with the pressure field due to the perturbation height 𝜂.

Let us now suppose |𝜂| ≪ 𝐻 and |𝜕𝜂/𝜕𝑡| ≪ |𝜕𝐻/𝜕𝑡| , which holds if the mass source is small
and gentle enough. Then (21.66b) may be written

𝜕𝐻
𝜕𝑡
+ ∇ ⋅ (𝒖𝐻) = 0. (21.67)

In this approximation, the potential vorticity equation (21.61) becomes, away from friction and
mass sources,

D
D𝑡
(𝑓0
𝐻
) = 0 or D𝐻

D𝑡
= 0, (21.68a,b)

where the second equation follows because 𝑓0 is a constant. (This equation also follows directly
from (21.67), because the velocity is geostrophic and divergence-free where friction is absent; how-
ever, it is better thought of as a potential vorticity equation, not a mass conservation equation.)
Equation (21.68b) means that fluid columns change position in order to keep the same value of𝐻.
Further, because𝐻 only varies with 𝑟, (21.68b) becomes

𝜕𝐻
𝜕𝑡
+ 𝑣𝑟 𝜕𝐻
𝜕𝑟
= 0, (21.69)

where the superscript 𝑟 indicates the radial component of velocity. Using (21.64) and (21.65) then
gives

𝑣𝑟 = − 𝑔
𝛺2𝑟
⟨𝑆⟩ . (21.70)

This is a remarkable result, for it implies that, if ⟨𝑆⟩ is positive, the flow is toward the apex of the
dish, except at the location of the mass sources and in frictional boundary layers, no matter where
the mass source is actually located. The explanation of this counter-intuitive result is simple enough.
If ⟨𝑆⟩ > 0 the overall height of the fluid increases with time; thus, in order that a given material
column of fluid keep its height fixed, it must move toward the apex of the dish. The full velocity
may be obtained, away from the frictional regions, using the divergence-free nature of the velocity:

∇ ⋅ 𝒖 = 1
𝑟
[𝜕(𝑟𝑣

𝑟)
𝜕𝑟
+ 𝜕𝑣
𝜃

𝜕𝜃
] = 0. (21.71)

Then, using (21.70), 𝜕𝑣𝜃/𝜕𝜃 = 0 except at a source or sink, or in a frictional boundary layer. As-
suming there is only one frictional boundary layer, 𝑣𝜃 = 0 except at those latitudes (i.e., values of
𝑟) that contain a mass source or sink.

To balance the flow toward the apex theremust, then, be a boundary layer in which the flow has
the opposite sense, and therefore in which frictional effects are important. To determine where the
boundary layer is — on the east or west side of the domain — we need some vorticity dynamics.
Away from the mass source, but including friction, the potential vorticity equation is

D
D𝑡
(𝑓0
𝐻
) = curl𝑧𝑭
𝐻

or − 𝑓0
𝐻2

D𝐻
D𝑡
= curl𝑧𝑭, (21.72a,b)

and the free surface of the water slopes downwards toward the apex, as illustrated in Fig. 21.10.
Now, suppose that there are a mass source and a sink of equal magnitudes, with the source further
from the apex than the sink, as in the panel at the bottom right of Fig. 21.11. The flow from source
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Fig. 21.11 Idealized examples of the flow in the rotating sector experiments, with various loca-
tions of a source (𝑆) or sink (−𝑆) of mass.

to sink must be along either the left or right boundary of the container. To see which, note that
the flow is toward smaller values of𝐻, and therefore the left-hand side of (21.72a) is positive. To
balance this, the friction in the boundary current must impart a positive vorticity to the flow (i.e.,
curl𝑧𝑭 > 0), which means in general that the flow itself must have negative vorticity, and the flow
is clockwise. (For example, if 𝑭 = −𝜆𝒖 the right-hand side of (21.72) is −(𝜆/𝐻)curl𝑧𝒖 and this is
positive if the flow is clockwise.) Clockwise flow implies a western boundary layer, on the left of
the container. A western boundary layer is a general feature, not dependent on the placement of
mass sources or sinks. For suppose there is a single source of mass, as for example in the upper
left example of Fig. 21.11; the interior mass flow will then be toward the apex and the flow in
the boundary layer away from the apex. The left-hand side of (21.72a) is then negative, and so
curl𝑧𝑭must be negative. Theflowmust then have an anticlockwise sense, again requiring awestern
boundary layer to achieve a balance in the potential vorticity equation.

The flow is in some ways analogous to flow on the 𝛽-plane, and in particular:
(i) the 𝑟-dependence of the height field provides a background potential vorticity gradient, anal-

ogous to the 𝛽-effect;
(ii) the time-dependence of𝐻 is analogous to a wind curl, since it is this that ultimately drives

the fluid motion.
The analogies are drawn out explicitly in the shaded box on page 823; the box also includes a
column for abyssal flow in the ocean, discussed in the next two sections.

21.5 A MODEL FOR OCEANIC ABYSSAL FLOW
We will now extend the reasoning applied to the rotating tank to the rotating sphere, and so

construct a model — the Stommel–Arons model — of the abyssal flow in the ocean.16 The basic
idea is simple: we model the deep ocean as a single layer of homogeneous fluid in which there is a
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Fig. 21.12 The structure of a
Stommel–Arons ocean model of
the abyssal circulation. Convec-
tion at high latitudes provides
a localized mass-source to the
lower layer, and upwelling through
the thermocline provides a more
uniform mass sink.

w = 0

Thermocline
Uniform upwelling

Cold abyss

Warm upper ocean Cold polar waters

Equator Pole

Ocean surface

Convection.

Mass source

for lower layer.

localized injection of mass at high latitudes, representing convection (Fig. 21.12). However, unlike
the rotating dish, mass is extracted from this layer by upwelling into the warmer waters above
it, keeping the average thickness of the abyssal layer constant. We assume that this upwelling is
nearly uniform, that the ocean is flat-bottomed, and that a passive western boundary current may
be invoked to satisfy mass conservation, and which does not affect the interior flow. Obviously,
these assumptions are very severe and the model can at best be a conceptual model of the real
ocean. Given that, we will work in Cartesian coordinates on the 𝛽-plane, and use the planetary-
geostrophic approximation.

The momentum and mass continuity equations are

𝒇 × 𝒖 = −∇𝑧𝜙 and ∇𝑧 ⋅ 𝒖 = −
𝜕𝑤
𝜕𝑧
, (21.73a,b)

where 𝒇 = (𝑓0 + 𝛽𝑦)𝐤. On elimination of 𝜙, (21.73) yields the now-familiar balance,

𝛽𝑣 = 𝑓𝜕𝑤
𝜕𝑧
. (21.74)

Except in the localized regions of convection, the vertical velocity is, by assumption, positive and
uniform at the top of the lower layer, and zero at the bottom. Thus (21.74) becomes

𝑣 = 𝑓
𝛽
𝑤0
𝐻
, (21.75)

where 𝑤0 is the uniform upwelling velocity and𝐻 the layer thickness. Thus, the flow is polewards
everywhere (including the Southern Hemisphere), vanishing at the equator.

21.5.1 Completing the Solution

Since 𝑣 = 𝑓−1(𝜕𝜙/𝜕𝑥), the pressure is given by

𝜙 = ∫
𝑥

𝑥0
(𝑓
2𝑤0
𝛽𝐻
) d𝑥′, (21.76)

where 𝑥0 is a constant of integration, to be determined by the boundary conditions. Because there
is no flow into the eastern boundary, 𝑥𝐸, we set 𝜙 = constant at 𝑥 = 𝑥𝐸, and because this is a
one-layer model we are at liberty to set that constant equal to zero. Thus,

𝜙(𝑥) = −∫
𝑥𝐸

𝑥
(𝑓
2𝑤0
𝛽𝐻
) d𝑥′ = − 𝑓

2

𝛽𝐻
𝑤0(𝑥𝐸 − 𝑥). (21.77)
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Analogies Between a Rotating Dish, Wind-Driven and Abyssal Flows

Consider homogeneousmodels of: (i) a rotating dish; (ii) wind-driven flow on the 𝛽-plane;
and (iii) abyssal flow on the 𝛽-plane. We model them all with a single layer of homoge-
neous fluid satisfying the planetary geostrophic equations. In (i) the mass source, ⟨𝑆⟩, is
localized and the total depth of the fluid layer changes with time; fluid columns move to
keep their depth constant. In (ii) there is no mass source and the depth of the fluid layer
is constant; the fluid motion is determined by the wind-stress curl, curl𝑧𝝉, and by 𝛽. In
(iii) the fluid source (convection) is localized at high latitudes and exactly balanced by a
mass loss, 𝑆𝑢, due to upwelling everywhere else, so that layer depth is constant and 𝑆𝑢 is
uniform and negative nearly everywhere. The equations below then apply away from fric-
tional boundary layers and localized mass sources.

(i) Rotating dish (ii) Wind-driven flow (iii) Abyssal flow

PV conservation
D
D𝑡
(𝑓0
𝐻
) = 0 D

D𝑡
( 𝑓
𝐻0
) = 1
𝐻0

curl𝑧𝝉
D
D𝑡
(𝑓
ℎ
) = −𝑓𝑆𝑢
ℎ2

This leads to

𝑣𝑟 𝜕𝐻
𝜕𝑟
= −𝜕𝐻
𝜕𝑡

𝑣
𝐻0
𝜕𝑓
𝜕𝑦
= 1
𝐻0

curl𝑧𝝉
𝑣
ℎ
𝜕𝑓
𝜕𝑦
= −𝑓𝑆𝑢
ℎ2

and

𝑣𝑟 = − 𝑔
𝛺2𝑟
⟨𝑆⟩ 𝑣 = 1

𝛽
curl𝑧𝝉 𝑣 = −𝑓𝑆𝑢ℎ

𝛽

⟨𝑆⟩ is localized curl𝑧𝝉 is wind stress 𝑆𝑢 is upwelling
mass source curl mass loss

Meridional mass flow away from boundaries is thus determined by:

sign (and not location) of sign of wind-stress curl, upwelling and sign of
localized mass source, ⟨𝑆⟩, curl𝑧𝝉, 𝑓, so polewards if

𝑆𝑢 < 0 (upwelling).

The zonal velocity follows using geostrophic balance,

𝑢 = 1
𝑓
𝜕𝜙
𝜕𝑦
= 2
𝐻
𝑤0(𝑥𝐸 − 𝑥), (21.78)

where we have also used 𝜕𝑓/𝜕𝑦 = 𝛽 and 𝜕𝛽/𝜕𝑦 = 0. Thus the velocity is eastwards in the interior,
and independent of 𝑓 and latitude, provided 𝑥𝐸 is not a function of 𝑦.
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Fig. 21.13 Abyssal circulation in a spherical sector (left) and in a corresponding Cartesian rectan-
gle (right).

Using (21.75) and (21.78) we can confirm mass conservation is indeed satisfied:

𝜕𝑢
𝜕𝑥
+ 𝜕𝑣
𝜕𝑦
+ 𝜕𝑤
𝜕𝑧
= −2𝑤0
𝐻
+ 𝑤0
𝐻
+ 𝑤0
𝐻
= 0. (21.79)

21.5.2 Application to the Ocean
Let us consider a rectangular ocean with a mass source at the northern boundary, balanced by
uniform upwelling (see Figs. 21.13 and 21.14). Since the interior flow will be northwards, we an-
ticipate a southwards flowing western boundary current to balance mass. Conservation of mass in
the area polewards of the latitude 𝑦 demands that

𝑆0 + 𝑇𝐼(𝑦) = 𝑇𝑊(𝑦) + 𝑈(𝑦), (21.80)

where 𝑆0 is the strength of the source, 𝑇𝑊 the equatorwards transport in the western boundary
current, 𝑇𝐼 the poleward transport in the interior, and 𝑈 is the integrated loss due to upwelling
polewards of 𝑦. Then, using (21.75),

𝑇𝐼 = ∫
𝑥𝐸

𝑥𝑊
𝑣𝐻d𝑥 = ∫

𝑥𝐸

𝑥𝑊

𝑓𝑤0
𝛽

d𝑥 = 𝑓
𝛽
𝑤(𝑥𝐸 − 𝑥𝑊). (21.81)

The upwelling loss is given by

𝑈 = ∫
𝑥𝐸

𝑥𝑊
∫
𝑦𝑁

𝑦
𝑤d𝑥 = 𝑤0(𝑥𝐸 − 𝑥𝑊)(𝑦𝑁 − 𝑦), (21.82)

where 𝑦𝑁 denotes the northern (polar) boundary. Assuming the source term is known, then using
(21.80) we obtain the strength of the western boundary current,

𝑇𝑊(𝑦) = 𝑆0 + 𝑇𝐼 − 𝑈 = 𝑆0 +
𝑓
𝛽
𝑤(𝑥𝐸 − 𝑥𝑊) − 𝑤0(𝑥𝐸 − 𝑥𝑊)(𝑦𝑁 − 𝑦). (21.83)

To close the problem we use the fact that over the entire basin mass must be balanced, which
gives a relationship between 𝑤0 and 𝑆0,

𝑆0 = 𝑤0𝛥𝑥𝛥𝑦, (21.84)
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Fig. 21.14 Mass budget in an idealized abyssal ocean.
Polewards of some latitude 𝑦, the mass source (𝑆0)
plus the poleward mass flux across 𝑦 (𝑇𝐼) are equal to
the sum of the equatorward mass flux in the western
boundary current (𝑇𝑊) and the integrated loss due to
upwelling (𝑈) polewards of 𝑦. See (21.80).

where 𝛥𝑥 = 𝑥𝐸 − 𝑥𝑊 and 𝛥𝑦 = 𝑦𝑁 − 𝑦𝑆, with 𝑦𝑆 being the southern boundary of the domain. The
strength of the circulation (i.e., themagnitude of 𝑆0 or𝑤0) is in reality determined by the diffusivity,
𝜅, as previously discussed, and here we take it as a given.

Using (21.84), (21.83) becomes

𝑇𝑊(𝑦) = −𝑤0 (𝛥𝑥(𝑦𝑁 − 𝑦) −
𝑓
𝛽
𝛥𝑥 − 𝛥𝑥𝛥𝑦) = 𝑤0𝛥𝑥(𝑦 − 𝑦𝑆 +

𝑓
𝛽
) . (21.85)

With no loss of generality we will take 𝑦𝑆 = 0 and 𝑓 = 𝑓0 + 𝛽𝑦. Then (21.85) becomes

𝑇𝑊(𝑦) = 𝑤0𝛥𝑥 (2𝑦 + 𝑓0/𝛽) , (21.86)

or, using 𝑆0 = 𝑤0𝛥𝑥𝑦𝑁,

𝑇𝑊(𝑦) =
𝑆0
𝑦𝑁
(2𝑦 − 𝑓0
𝛽
) . (21.87)

With a slight loss of generality (but consistent with the spirit of the planetary-geostrophic approx-
imation) we take 𝑓0 = 0, which is equivalent to supposing that the equatorial boundary of the
domain is at the equator, and finally obtain

𝑇𝑊(𝑦) = 2𝑆0
𝑦
𝑦𝑁
. (21.88)

At the northern boundary this becomes

𝑇𝑊(𝑦) = 2𝑆0, (21.89)

which means that the flow southwards from the source is twice the strength of the source itself!
We also see that:

(i) the western boundary current is equatorward everywhere;
(ii) at the northern boundary the equatorward transport in the western boundary current is

equal to twice the strength of the source;
(iii) the northwardmass flux at the northern boundary is equal to the strength of the source itself.

We may check this last point directly: from (21.81)

𝑇𝐼(𝑦𝑁) =
𝛽𝑦𝑁
𝛽
𝑤0𝛥𝑥 = 𝑆. (21.90)
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Fig. 21.15 Schematic of a Stommel–Arons circulation in a
single sector. The transport of the western boundary current
is greater than that provided by the source at the apex, il-
lustrating the property of recirculation. The transport in the
western boundary current𝑇𝑊 decreases in intensity equator-
ward, as it loses mass to the polewards interior flow, and
thence to upwelling. The integrated sink, due to upwelling,
𝑈, exactly matches the strength of the source, 𝑆0.

S0

U

TW

The fact that convergence at the pole balances 𝑇𝑊 and 𝑆0 does not of course depend on the partic-
ular choice we made for 𝑓 and 𝑦𝑆.

The flow pattern evidently has the property of recirculation (see Fig. 21.15): this is one of the
most important properties of the solution, and one that is likely to transcend all the limitations
inherent in the model. This single-hemisphere model may be thought of as a crude model for
aspects of the abyssal circulation in the North Atlantic, in which convection at high latitudes near
Greenland is at least partially associated with the abyssal circulation. In the North Pacific there
is, in contrast, little if any deep convection to act as a mass source. Rather, the deep circulation is
driven by mass sources in the opposite hemisphere, and we now consider a simple model of this.

21.5.3 A Two-hemisphere Model
Our treatment now is even more obviously heuristic, since our domain crosses the equator yet we
continue to use the planetary-geostrophic equations, invalid at the equator. We also persist with
Cartesian geometry, even for these global-scale flows. In our defence, we remark that the value of
the solutions lies in their qualitative structure, not in their quantitative predictions. Let us consider
a situation with a source in the Southern Hemisphere but none in the Northern Hemisphere. For
later convenience we take the Southern Hemisphere source to be of strength 2𝑆0, and we suppose
the two hemispheres have equal area. As before, the upwelling is uniform, so that to satisfy global
mass balance 𝑆0 and 𝑤0 are related by

𝑆0 = 𝑤0𝛥𝑥𝛥𝑦, (21.91)

where 𝛥𝑥𝛥𝑦 is the area of each hemisphere. Then, for a given 𝑤0, the zonally integrated poleward
interior flow in each hemisphere, away from the equator, follows from Sverdrup balance,

𝑇𝐼(𝑦) =
𝑓
𝛽
𝑤0(𝑥𝐸 − 𝑥𝑊) = 𝑆0

𝑦
𝑦𝑝
, (21.92)

where 𝑦𝑝 is either 𝑦𝑁 (the northern boundary) or 𝑦𝑆. The western boundary current is assumed to
‘take up the slack’, that is to be able to adjust its strength to satisfy mass conservation. Thus, since
𝑇𝐼(𝑦𝑁) = 𝑆0, where 𝑆0 is half the strength of the source in the Southern Hemisphere, it is plain
that there must be a southwards flowing western boundary current near the northern end of the
Northern Hemisphere, even in the absence of any deep water formation there!

In the northern hemisphere, the total loss due to upwelling polewards of a latitude 𝑦 is given
by

𝑈(𝑦) = 𝑤0𝛥𝑥|𝑦𝑁 − 𝑦|. (21.93)
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Fig. 21.16 Schematic of a Stommel–Arons circula-
tion in a two-hemisphere basin. There is only one mass
source, and this is in the Southern Hemisphere and for
convenience it has a strength of 2. Although there is
no source in the Northern Hemisphere, there is still
a western boundary current and a recirculation. The
integrated sinks due to upwelling exactly match the
strength of the source.

The strength of the western boundary current is then given by, with southward flow positive,

𝑇𝑊(𝑦) = 𝑇𝐼 − 𝑈 =
𝑓
𝛽
𝑤0𝛥𝑥 − 𝑤0𝛥𝑥(𝑦𝑁 − 𝑦) = −𝑤0𝛥𝑥(𝑦𝑁 − 2𝑦), (21.94)

using 𝑓 = 𝛽𝑦. The boundary current thus changes sign halfway between equator and North Pole,
at 𝑦 = 𝑦𝑁/2. [In spherical coordinates, the analogous latitude turns out to be at 𝜃 = sin−1(1/2).]
At the North Pole 𝑦 = 𝑦𝑁 and we have

𝑇𝑊(𝑦𝑁) = 𝑤0𝛥𝑥𝑦 = 𝑆. (21.95)

The solution is illustrated schematically in Fig. 21.16. We can (rather fancifully) imagine this to
represent the abyssal circulation in the PacificOcean, with no source of deepwater at high northern
latitudes.17

21.5.4 Summary Remarks on the Stommel–Arons Model
If we were given the location and strength of the sources of deep water in the real ocean, the
Stommel–Arons model could give us a global solution for the abyssal circulation. The solution
for the Atlantic, for example, resembles a superposition of Fig. 21.15 and Fig. 21.16 (with deep wa-
ter sources in the Weddell Sea and near Greenland), and that for the Pacific resembles Fig. 21.16
(with a deep water source emanating from the Antarctic Circumpolar Current). Perhaps the great-
est success of the model is that it introduces the notions of deep western boundary currents and
recirculation — enduring concepts of the deep circulation that remain with us today. For example,
the North Atlantic ocean does have a well-defined deep western boundary current running south
along the eastern seaboard of Canada and the United States, as seen in Fig. 21.17. However, in
other important aspects the model is found to be in error, in particular it is found that there is little
upwelling through the main thermocline — much of the water formed by deep convection in the
North Atlantic in reality upwells in the Southern Hemisphere.18 Are there fundamental problems
with themodel, or just discrepancies in details that might be corrected with a slight reformulation?
To help answer that we summarize the assumptions and corresponding predictions of the model,
and distinguish the essential aspects from what is merely convenient:
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Fig. 21.17 The ocean currents at a depth of
2500m in the North Atlantic, obtained us-
ing a combination of observations andmodel
(as in Fig. 19.3). Note the southwards flowing
deep western boundary current.
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(i) A foundational assumption is that of linear geostrophic vorticity balance in the ocean abyss,
represented by 𝛽𝑣 ≈ 𝑓𝜕𝑤/𝜕𝑧, or its shallow water analogue.
— The effects of mesoscale eddies are thereby neglected. As discussed in Chapter 12, in

their mature phase mesoscale eddies seek to barotropize the flow, and so create deep
eddying motion that might dominate the deep flow.

(ii) A second important assumption is that of uniform upwelling, across isopycnals, into the
upper ocean, and that 𝑤 = 0 at the ocean bottom. When combined with (i) this gives rise to
a poleward interior flow, and by mass conservation a deep western boundary current. The
upwelling is a consequence of a finite diffusion, which in turn leads to deep convection as in
the model of sideways convection of Section 21.1.
— The uniform-upwelling assumption might be partially relaxed, while remaining in the

Stommel–Arons framework, by supposing (for example) that the upwelling occurs near
boundaries, or intermittently, with corresponding detailed changes to the interior flow.

— If bottom topography is important, then 𝑤 ≠ 0 at the ocean bottom. This effect may
be most important if mesoscale eddies are present, for then in an attempt to maintain
its value of potential vorticity the abyssal flow will have a tendency to meander nearly
inviscidly along contours of constant topography. In the presence of amid-ocean ridge,
some of the deepwestern boundary currentmight travelmeridionally along the eastern
edge of the ridge instead of along the coast.

— The deep water might not upwell across isopycnals, but might move along isopycnals
that intersect the surface (or are connected to the surface by convection). If so, then in
the presence of mechanical forcing a deep circulation could be maintained even in the
absence of a diapycnal diffusivity. The circulation might then be qualitatively different
from the Stommel–Arons model, although a linear vorticity balance might still hold,
with deep western boundary currents. This is discussed in Section 21.6.

Even if the Stommel–Arons picture were to be essentially correct, we should not consider the deep
flow as being driven by deep convection at the source regions. It is a convenience to specify the
strength of the source term in these regions for the calculations but, just as in the models of side-
ways convection considered in Section 21.1, the overall strength of the circulation (insofar as it is
buoyancy driven) is a function of the size of the diffusivity and the meridional buoyancy gradient
at the surface.
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Fig. 21.18 Two independent estimates of the zonally-averaged overturning circulation of the world’s
ocean. The left panel is from an inverse model that mainly uses hydrographic observations, and shows
the residual circulation. The right panel is a state estimation that makes explicit use of a numerical model,
and shows the Eulerian circulation. 20

21.6††† A MODEL OF DEEP WIND-DRIVEN OVERTURNING
There is no need to ask the question ‘Is the model true?’. If ‘truth’ is to be the ‘whole truth’ the
answer must be ‘No’. The only question of interest is ‘Is the model illuminating and useful?’
George E. Box, Robustness in the strategy of scientific model building, 1979.

We previously noted that, with values of the diapycnal diffusivity that are measured in the main
thermocline, the theoretical predictions of the moc are rather weaker than observations suggest.
There are two possible resolutions to this problem. One is that the measured diapycnal diffusivity
is in fact large in some parts of the ocean (e.g., in the abyss over steep topography), and if this
were sufficient to produce the measured overturning and stratification the issue would be resolved.
However, such a calculation would likely be fraught with uncertainty. A second and more straight-
forward resolution would arise if a deep circulation, and deep stratification, could be maintained
by a mechanism that was independent of the diapycnal diffusivity. This second approach is the one
we shall take in for much of the rest of this chapter. Specifically, our goal is to construct and ex-
plore models of the overturning circulation of the ocean, and the concomitant deep stratification,
that have a ‘wind-driven’ component that persists even as the diffusivity goes to zero.19

21.6.1 Observations and Physical Principles
We are motivated by the observation that the moc is in large part interhemispheric, with water
sinking at high northern latitudes and upwelling in the Antarctic Circumpolar Current (acc), as
seen for the global circulation in Fig. 21.18 (where the left panel better shows the trajectory of water
parcels) and in the Atlantic in Fig. 21.29. The Atlantic moc (which is the dominant contributor to
the global moc) is dominated by two cells, an upper cell of North Atlantic Deep Water (nadw)
with water sinking at about 60°N, moving southwards largely along isopycnals and upwelling in
the south. Beneath this cell lies Antarctic Bottom Water (aabw), with sinking at high southern
latitudes followed by a deep cross hemispheric circulation and upwelling again in the acc. We
would like to construct a purely wind-driven model that shows these features as simply as possible.

In the absence of a diapycnal diffusivity no upwelling can occur through the stratification, be-
cause that is a diabatic process. Rather, if there is deep stratification, the deepwatermust be directly
connected to the surface along isopycnals or via a convective pathway, for convection, although
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Fig. 21.19 Idealized geometry of the South-
ern Ocean: a re-entrant channel, partially
blocked by a sill, is embedded within a closed
rectangular basin; thus, the channel has peri-
odic boundary conditions. The channel is a
crude model of the Antarctic Circumpolar Cur-
rent, with the area over the sill analogous to the
Drake Passage.

z
y

x

diabatic, does not rely on a finite eddy diapycnal diffusivity. Let us recall two de facto principles
about deep circulation:
(i) A basin will, in the absence of mechanical forcing, tend to fill with the densest available fluid.
(ii) Light fluid forced down by wind may displace the cold fluid, so producing stratification.

A completely closed ocean thus fills completely with dense polar water, except in the upper several
hundred metres where the main thermocline forms. However, suppose that the polewards part
of the basin is not fully enclosed but is periodic, as illustrated in Fig. 21.19, with a sill across it at
mid-depth, and suppose too that the surface temperature decreases monotonically polewards. A
fully enclosed basin exists only beneath the level of the sill, and we may expect the densest water
in the basin, formed at the polewards edge of the domain, to fill the basin only below the level of
the sill, and that above this may lie warmer water with origins at lower latitudes. Furthermore,
suppose that an eastward wind blows over the channel that produces an equatorial flow in the
Ekman layer. Then mass conservation demands that there must exist a subsurface return flow, and
thus a meridional overturning circulation is set up. Note the essential role of the channel in this:
if the gap were closed, then the return flow could take place at the surface via a western boundary
current, as in a conventional subpolar gyre, and no overturning circulation need be set up. But in
a zonally-periodic channel, an eastward wind produces a northward Ekman flow that can only be
balanced by a return flow at depth — that is, a meridional overturning circulation.

21.6.2 A Single-hemisphere Model
Let us first a single-hemisphere basin with a periodic channel near its poleward edge. We suppose
the basin to be in the southern hemisphere, so the channel represents the Antarctic Circumpolar
Current (acc), and that the dynamics are Boussinesq and planetary-geostrophic. We will choose
extremely simple forms of wind and buoyancy forcing to allow us to obtain an analytic solution,
and then later discuss how the qualitative forms of these solutions might more apply generally.

Wind and buoyancy forcing
Thermodynamic forcing is imposed by fixing the surface buoyancy, 𝑏𝑠. (In the discussion follow-
ing salinity is absent, and buoyancy is virtually equivalent to temperature.) South of the gap we
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Fig. 21.20 The surface buoyancy 𝑏𝑠, meridional Ekman velocity 𝑣𝐸, vertical Ekman velocity 𝑤𝐸
and the solution streamlines for the geostrophic horizontal flow, omitting the western boundary
currents. The ordinate in all plots is latitude, with the pole at the bottom, and the four fields are
given by, respectively, (21.96), (21.97a), (21.97b) and (21.98), with purely zonal flowgiven by (21.101)
in the channel.

suppose the buoyancy to be constant, then that it increases linearly across the gap, and is constant
again polewards of the gap. Thus, there is no temperature gradient across the subtropical gyre,
focusing attention on the influence of the channel. Thus, referring to Fig. 21.20 or Fig. 21.21 for
the definitions of the geometric factors,

𝑏𝑠 =
{{{{
{{{{
{

𝑏1, 𝑦0 ≤ 𝑦 ≤ 𝑦1,
𝑏1 +
(𝑏2 − 𝑏1)(𝑦 − 𝑦1)
𝑦2 − 𝑦1

, 𝑦1 ≤ 𝑦 ≤ 𝑦2,

𝑏2, 𝑦 ≥ 𝑦2,

� (21.96)

where 𝑏2 > 𝑏1, and both are constants, and we may take 𝑏1 = 0 and 𝑦0 = 0.
The wind forcing is purely zonal, and it is convenient to express this in terms of the Ekman

transport and associated pumping (refer to section 5.7). In the channel the Ekman transport is
chosen to be (realistically) equatorward and (less realistically) constant, a simplification that avoids
complications of wind-driven upwelling in the channel. South (polewards) of the channel there
is a conventional subpolar gyre, with an Ekman upwelling and an equatorward Ekman transport
that joins smoothly to that of the channel. Equatorwards of the channel there is a conventional
subtropical gyre, with Ekman downwelling. All this may be achieved by specifying:

𝑣𝐸 =

{{{{{
{{{{{
{

𝑉
2
[1 − cos( π𝑦

𝛥𝑦1
)]

𝑉
𝑉
2
[1 + cos(π(𝑦 − 𝑦2)

𝛥𝑦2
)]

�𝑤𝐸 =

{{{{{
{{{{{
{

𝑊1 sin(
π𝑦
𝛥𝑦1
) 0 ≤ 𝑦 < 𝑦1

0 𝑦1 ≤ 𝑦 < 𝑦2
−𝑊2 sin(

π(𝑦 − 𝑦2)
𝛥𝑦2
) 𝑦2 ≤ 𝑦 <y3,

� (21.97a,b)

where𝛥𝑦1 = 𝑦1,𝛥𝑦2 = 𝑦3−𝑦2, and𝑉 is a constant that determines themagnitude of themeridional
Ekman flow. The meridional Ekman transport, 𝑣𝐸, is related to the Ekman pumping by 𝑤𝐸/𝛿𝐸 =
𝜕𝑣𝐸/𝜕𝑦, so that𝑊𝑖 = 𝛿𝐸π𝑉/(2𝛥𝑦𝑖), where 𝛿𝐸 is the Ekman layer thickness. If 𝑓 were constant,
the wind-stress curl would be proportional to the𝑤𝐸 field above. The precise details of the forcing
do not affect the qualitative form of the solution — they merely allow an analytic solution to be
obtained — but there are two essential aspects to it:
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Fig. 21.21 Cross-section of the structure of the
single-hemisphere ocean model described in Sec-
tion 21.6.2. The domain is zonally closed equator-
wards of 𝑦2 and polewards of 𝑦1, with a zonally
periodic channel between latitudes 𝑦1 and 𝑦2 and
above the sill, which has height 𝜂sill. The arrows
indicate the fluid flow driven by the equatorward
Ekman transport in the channel, and the solid lines
are isopycnals.
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(i) The surface is cold south of the channel, warm north of the channel, and there is a tempera-
ture gradient across the channel.

(ii) The Ekman flow is equatorwards within the channel, with conventional gyres to either side.
Themeridional extent of the region south of the channel and thewind forcingwithin it are relatively
unimportant, and the region could be shrunk to nearly zero.

Solution in the gyres
Below the depth of the sill the basin is fully enclosed, and therefore up to that level the basin will
fill with the densest available water (much as described in Section 21.1), except where it may be
displaced bywarmer fluid equatorward of the gap that is pumped down below the level of the sill by
the wind (Fig. 21.21). Thus, all of the domain south of the channel, and nearly everywhere below
the sill, the water has buoyancy 𝑏1. Polewards of the channel, then, the fluid is barotropic and its
vertically integrated horizontal circulation is given by Sverdrup balance, 𝛽𝑉 = 𝑓𝑤𝐸/𝐻, where 𝑉
is the vertically integrated flow. With the wind stress of (21.97) we get a conventional barotropic
subpolar gyre (and associated western boundary current) by the same methods that we employed
in Chapter 19.

Above the sill, net meridional geostrophic transfer is forbidden in the channel region, because
by geostrophic balance 𝑓𝑣𝑔 = 𝜕𝜙/𝜕𝑥 = 0, where 𝜙 is the pressure and the overbar denotes a zonal
average. Equatorward of the channel the region above the sill will therefore tend to fill with the
densest water available to it, and this is water with buoyancy equal to 𝑏2 (which is the buoyancy of
the water as it emerges from the channel). However, because of the presence of wind forcing, the
base of this layer is not flat; rather, this fluid obeys the dynamics of the reduced-gravity single-layer
ventilated thermocline model discussed in Section 20.7.1. In such a model the depth of the fluid
on the eastern boundary is constant, and this must be specified. Here, this is given by the height of
the sill, and therefore ℎ(𝑥 = 𝑥𝑒, 𝑦) = ℎ𝑒 = 𝐻 − 𝜂sill, where𝐻 is the total depth of the basin and 𝜂sill
is the sill height. Then, using (20.92) and (21.97), the thickness of the moving layer equatorward
of the sill is given by, for 𝑦2 < 𝑦 < 𝑦3,

ℎ2 = 𝐷2(𝑥, 𝑦) + ℎ2𝑒 , (21.98)

where
𝐷2 = −2𝑓

2

𝑔′𝛽
∫
𝑥𝑒

𝑥
𝑤𝐸 d𝑥′ =

2𝑓2
𝑔′𝛽
𝑊2(𝑥𝑒 − 𝑥) sin(

π(𝑦 − 𝑦2)
𝛥𝑦2
) , (21.99)

with 𝑔′ = 𝑏2 − 𝑏1. The solution is closed by the addition of a western boundary current. Note that
because ℎ > ℎ𝑒, the light fluid is pushed below the level of the sill in the subtropical gyre.
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Solution in the channel
In the channel, the fluid in the Ekman layer flows equatorward, and therefore there must be a com-
pensating poleward flow at depth. This will occur just below the level of the sill: it cannot be deeper,
because here the basin is full of denser, 𝑏1 fluid, and in the absence of eddying or ageostrophic flow
it cannot be shallower because of the geostrophic constraint. Now, because of the temperature
gradient across the channel the polewards flowing fluid is warmer than the fluid at the surface, and
therefore convectively unstable. Convection ensues, the result of which is the entire column of
fluid between the top of the sill and the surface mixes and takes on the temperature of the surface.
Thermal wind demands that there be a zonal flow associated with this meridional temperature
gradient, so this temperature distribution is advected eastwards into the interior of the channel.
Because the interior is presumed to be adiabatic, this temperature field extends zonally through-
out the channel. Thus, in steady state, the temperature everywhere in the channel above the level
of the sill is given by

𝑏(𝑥, 𝑦, 𝑧) = 𝑏𝑠(𝑦) = 𝑏1 +
(𝑏2 − 𝑏1)(𝑦 − 𝑦1)
𝑦2 − 𝑦1

, 𝑦1 ≤ 𝑦 ≤ 𝑦2, 𝑧 > 𝜂sill. (21.100)

Convective mixing does not rely on a diapycnal diffusivity other than a molecular one: convective
plumes are generally turbulent, generating small scales in the fluid interior where mixing and en-
trainment may occur; failing that, the lighter fluid is displaced to the surface where it cools by way
of interaction with the atmosphere. The zonal velocity within the channel is then given by thermal
wind balance, so that

𝑢(𝑥, 𝑦, 𝑧) = − 1
𝑓
( 𝑏2 − 𝑏1
𝑦2 − 𝑦1
) (𝑧 − 𝜂sill), (21.101)

and since 𝑓 < 0 the shear, 𝜕𝑢/𝜕𝑧, is positive.
Regarding the depth-integrated zonal momentum budget, the wind stress at the surface is bal-

anced by a pressure force against the sill walls. This pressure gradient arises through themeridional
circulation, as the southward return flow just below the level of the sill is associated with a zonal
pressure gradient that is exactly equal, but opposite, to the stress exerted by the wind. That is to
say, in the Ekman layer the wind stress is balanced by the Coriolis force on the equatorward flow
in the Ekman layer, which by mass conservation is equal and opposite to the Coriolis force on the
deep poleward flow, which by geostrophy is equal to the net pressure force on the sill walls. The
wind stress plays no role in determining the zonal transport of the channel: if the wind increases,
the meridional overturning and the pressure force increase but with no change to the transport.
This is a somewhat unrealistic feature of the model, for in reality the form stress induced by the
flow over bottom topography (and that balances the wind stress) is likely to be a function of the
zonal transport as well as the meridional transport.

A qualitative summary
The circulation of the model may be described as follows. The entire basin polewards of the chan-
nel fills with dense, 𝑏1, water. Below the sill this fluid extends equatorward, filling the lower part
of the channel and subtropical basin, up to the level of the sill. Now, Ekman pumping in the chan-
nel forces near-surface fluid equatorward, which warms as it goes, entering the subtropical basin
with buoyancy 𝑏2. This fluid fills the basin down to the level of the sill, where it encounters the
dense, 𝑏1, fluid. The subtropical basin is wind-driven, and it forms a subtropical gyre with a single
moving layer. Its dynamics are completely determined by specifying the wind, the reduced gravity
(𝑔′ = 𝑏2 − 𝑏1), and the depth of the fluid at the eastern boundary (the sill depth). Because of the
requirements of mass conservation, there must be a poleward return flow at depth, and so at the
level of the sill warm water flows polewards. This flow is convectively unstable (because the water
is lighter than that at the surface), and so the entire column of fluid mixes and its density takes
on the value at the surface. The meridional temperature gradient gives rise to an eastward flow,
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and this temperature field is advected zonally, and in steady state the temperature distribution is
zonally symmetric and given by (21.100). The overturning circulation within the acc is known as
the Deacon Cell, and this is a crude model of it. It is considered further in Section 21.7.

If the diapycnal diffusivity were non-zero, the sharp boundary between the two fluid masses at
the sill height would be diffused to a front of finite thickness, with some upwelling and water mass
transformation occurring across the front. This diffusive loss of dense fluid would be compensated
by water-mass formation at the surface, polewards of the channel, leading to a deep, diffusively-
driven circulation. That is, the deep water mass of 𝑏1 fluid would circulate: this is a crude model
of the ‘Antarctic Bottom Water’ cell.

Suppose now that the wind were everywhere zero, and the diffusivity small but non-zero. The
cold, 𝑏1 fluid would quickly completely fill the basin polewards of the channel, and would also fill
the basin equatorward of the channel up to the level of the sill. However, with no wind to drive
an overturning circulation dense 𝑏1 water would slowly drift ageostrophically across the channel,
displacing any warmer water until the entire basin were filled with the dense, 𝑏1, fluid, except for
a thin boundary layer at the top needed to satisfy the upper boundary condition. The final state
would be one of no motion, and no stratification, below this boundary layer.

The important overall conclusion to be drawn is the following: a deep meridional circulation
and a deep stratification can be maintained, even as the diapycnal diffusivity goes to zero, in the
presence of a wind forcing and a circumpolar channel. Of course there are a number of idealized or
unrealistic aspects to this model, perhaps the most egregious being:

• The vertical isopycnals in the channel will be highly baroclinically unstable. This will cause
the isopycnals to slump andwill potentially set up an eddy-induced circulation. We consider
this at length later on.
• This model has no surface temperature gradient across the subtropical gyre. If one were

present, it would lead to the formation of a ‘main’ subtropical thermocline, a full treatment
of which would require determining its eastern boundary conditions. This would not quali-
tatively affect the presence of a deep, wind-driven overturning circulation.
• The wind stress in the model channel is chosen so that the meridional Ekman transport is

constant. (This means the wind stress is chosen to vary in the same fashion as the Coriolis
parameter, and if𝑓were constant, thewind-stress curl would vanish.) Thus, there is nowind-
driven downwelling or upwelling in the channel, and this simplifies the solution. Numerical
simulations suggest that this choice does not affect the qualitative nature of the overturning
circulation or temperature distribution.

21.6.3 A Cross-equatorial Wind-driven Deep Circulation
Wequalitatively and heuristically extend the abovemodel to consider flow across the equator. Thus,
we suppose that the ocean basin extends to high northern latitudes, where there is, potentially,
another source of cold deep water. To keep the model simple and tractable we will assume a very
simple buoyancy structure:

𝑏𝑠 =

{{{{{{
{{{{{{
{

𝑏1, 0 ≤ 𝑦 ≤ 𝑦1,
𝑏1 +
(𝑏2 − 𝑏1)(𝑦 − 𝑦1)
𝑦2 − 𝑦1

, 𝑦1 ≤ 𝑦 ≤ 𝑦2,

𝑏2, 𝑦2 ≤ 𝑦 ≤ 𝑦4,
𝑏3 𝑦 > 𝑦4,

� (21.102)

where the geometry is illustrated in Fig. 21.22. Given that 𝑏2 > 𝑏1, there are three cases to consider:
(i) 𝑏3 > 𝑏2. This is not oceanographically relevant to today’s climate, nor does it provide another

potential deep water source.



21.6 A Model of Deep Wind-Driven Overturning 835

South Pole North PoleLatitude

Fig. 21.22 As for Fig. 21.21, but now for a two-
hemisphere ocean with a source of dense water,
𝑏3, at high northern latitudes. The solid lines are
isopycnals, and here the wind is zero in the North-
ern Hemisphere.

(ii) 𝑏3 < 𝑏1. The northern water is now the densest in the ocean, and would fill up the entire
basin north of the channel (except near the surface in regions where some 𝑏2 water is pushed
down by the wind), and so provide no mid-depth stratification.

(iii) 𝑏1 < 𝑏3 < 𝑏2. This is the most interesting and relevant case, and the only one we explore
further.

As regards the wind, we will assume that south of the equator this is given by (21.97). North of the
equator the wind forcing does not affect the qualitative nature of the overturning circulation, and
may be taken to be zero.

Descriptive solution

In case (iii), the entire basin below the sill fills with 𝑏1 water, except where wind forcing forces
warmer fluid below the sill level, as before. However, unlike the earlier case, the fluid above the
sill is predominantly 𝑏3 water from high northern latitudes. This forms in high polar latitudes
and fills most of the basin above the sill, from the basin boundary in the north to the channel in
the south (as discussed more below). However, except at latitudes where the 𝑏3 is formed, it does
not reach the surface because of the presence of 𝑏2 water. That water is pushed down by the wind
in the southern hemisphere to some as yet undetermined depth (discussed below), the boundary
between 𝑏2 and 𝑏3 water then forming the upper ocean thermocline.

These water masses circulate because of the wind forcing in the channel. As in the single-
hemisphere case, northwards flowing water emerges from the channel with buoyancy 𝑏2. This
emerges into a region of Ekman downwelling, with a northward transport carried by a western
boundary current. This transport crosses the equator finally reaching the latitudeswhere 𝑏3water is
formed where it sinks and returns equatorward, again in a western boundary current. (Away from
thewestern boundary layer there is nomeridional flow in the absence of diffusion, because the flow
satisfies 𝛽𝑣 = 𝑓𝜕𝑤/𝜕𝑧 and there is no upwelling.) This water then crosses the sill. However, unlike
the single-hemisphere case, in the northern part of the sill this water is denser than the surface
water; no convection occurs and so the 𝑏3 water extends upwards to the surface, where it warms by
contact with the atmosphere and is advected equatorward to become 𝑏2 water. Further south the
surface buoyancy in the channel is less than 𝑏3, and the column now mixes convectively, much as
in the single-hemisphere case. The solution is completed by specifying the thickness of the layer of
𝑏2 water at the surface. Now, if the circulation is in steady state, the meridional transport between
the gyres must equal that of the northward Ekman flow at the northern edge of the circumpolar
channel, and given the wind forcing, this is determined by the depth of the layer at the eastern
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boundary, a constant. Thus, in this model, global constraints determine the depth of the eastern
boundary of the thermocline.

Suppose that the wind were everywhere zero. Then, as in the single-hemisphere case, the cir-
culation would eventually die. Again, though, slow ageostrophic motion across the channel would
first allow the entire basin, within and on both sides of the channel, to fill with the densest available
water, and in the final steady state there would be no stratification (and no motion) below a thin
surface layer.

Suppose, on the other hand, that a small amount of diffusion were added to the wind-forced
model above. Then there would be mass exchange between the layers and, in particular, the deep
cell of 𝑏1 water would begin to circulate diffusively. In addition, the mid-depth cell would begin to
upwell through the 𝑏2–𝑏3 interface, and develop a diffusively driven circulation, in much the same
way as is illustrated in Fig. 20.15.

Summary remarks

The key result of this model is that, even as the diffusivity falls and the interior of the ocean be-
comes more and more adiabatic, a meridional cross-hemispheric circulation can be maintained,
provided that the wind across the circumpolar channel remains finite. The diabatic water mass
transformations all occur at the surface or in convection: these processes require a non-zero diffu-
sivity, but this can be the molecular diffusivity because the associated mixing involves turbulence,
which can generate arbitrarily small scales. (Note also that the convection that occurs in the cir-
cumpolar channel reduces the potential energy of the column, and requires no mechanical input
of energy.) Aside from the region of the acc, the meridional transport will occur (in this model)
in western boundary layers. Indeed, we may still expect to see a southwards flowing deep western
boundary current south of 𝑦4 and below the 𝑏2 water in Fig. 21.22, just as in the implicitly diffusive
Stommel–Arons model. In the acc itself, the meridional transport occurs in a subsurface current,
nestled against the sill. Although the overturning circulation in this model is ‘wind-driven’, the
possibility that it may be cross-equatorial depends upon the thermodynamic forcing; in particu-
lar, if there is no source of dense water in the northern hemisphere, then the basin above the sill
simply fills with 𝑏2 water, as in the model of Section 21.6.2, and there need be little or no inter-
hemispheric flow. We emphasize, too, that our model of interhemispheric flow is quite heuristic:
we have essentially posited that 𝑏2 water may continuously flow across the equator, possibly in a
western boundary current but without examining the equatorial dynamics at all.

The acc plays a key role in the above description but we have grossly oversimplified it. In
particular, the nearly vertical isopycnals of the model will be highly baroclinically unstable, and
this provides a convenient segue into our next topic.

21.7 THE ANTARCTIC CIRCUMPOLAR CURRENT

We now take a closer look at the Antarctic Circumpolar Current (acc) itself, with a focus on its
own internal dynamics; we come back to the connection with the rest of the world’s oceans in
Section 21.8. The acc system, sketched in Fig. 21.23, differs from other oceanic regimes primarily
in that the flow is, like that of the atmosphere, predominantly zonal and re-entrant. The two
obvious influences on the circulation are the strong, eastward winds (the ‘roaring forties’ and the
‘furious fifties’) and the buoyancy forcing associated with the meridional gradient of atmospheric
temperature and radiative effects that cause ocean cooling at high latitudes and warming at low
ones. Providing a detailed description of the resulting flow is properly the province of numerical
models, and here our goals are much more modest, namely to describe and understand some of
the fundamental dynamical mechanisms that determine the structure and transport of the system,
with a view to then connecting the acc to the rest of the world’s oceans.22
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Fig. 21.23 The major currents in the Southern
Ocean. Notable are the SouthAtlantic subtropic
gyre and the two main cores of the acc, associ-
ated with the Polar front and the sub-Antarctic
front.21

21.7.1 Steady and Eddying Flow
Consider again the simplified geometry of the SouthernOcean as sketched in Fig. 21.19. The ocean
floor is flat, except for a ridge (or ‘sill’) at the same longitude as the gyre walls; this is a crude repre-
sentation of the topography across theDrake Passage, that part of theACCbetween the tip of South
America and the Antarctic Peninsula. In the planetary-geostrophic approximation, the steady re-
sponse is that of nearly vertical isopycnals in the area above the sill, as illustrated in Fig. 21.21. Be-
low the sill a meridional flow can be supported and the isotherms spread polewards, as illustrated
in the left panel of numerical solutions using the primitive equations (Fig. 21.24).23

The stratification of the non-eddying simulation is similar to that predicted by the idealized
model illustrated in Fig. 21.21. However, the steep isotherms within the channel contain a huge
amount of available potential energy (ape), and the flow is highly baroclinically unstable. If baro-
clinic eddies are allowed to form, the solution is dramatically different: the isotherms slump, re-
leasing that ape and generatingmesoscale eddies that exercise control overmuch of the circulation.
An important conclusion is that baroclinic eddies are of leading-order importance in the dynamics
of the acc. A dynamical description of the acc without eddies would be qualitatively in error, in
much the same way as would a similar description of the mid-latitude troposphere (i.e., the Ferrel
Cell). These eddies transfer both heat and momentum, and much of the rest of our description
will focus on their effects.

21.7.2 Vertically Integrated Momentum Balance
The momentum supplied by the strong eastward winds must somehow be removed. Presuming
that lateral transfers of momentum are small the momentum must be removed by fluid contact
with the solid Earth at the bottom of the channel. Thus, let us first consider the vertically inte-
gratedmomentum balance in a channel, without regard to how themomentummight be vertically
transferred. We begin with the frictional–geostrophic balance, namely

𝒇 × 𝒖 = −∇𝜙 + 𝜕𝝉
𝜕𝑧
, (21.103)
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(a) (b)

Fig. 21.24 The zonally averaged temperature field in numerical solutions of the primitive equa-
tions in a domain similar to that of Fig. 21.19 (except that here the channel and sill are nestled
against the poleward boundary). Panel (a) shows the steady solution of a diffusive model with no
baroclinic eddies, and (b) shows the time averaged solution in a higher-resolution model that al-
lows baroclinic eddies to develop. Two contour values in each panel are labelled. The dotted lines
show the channel boundaries and the sill.24

where 𝝉 is the kinematic stress, 𝝉/𝜌0, and 𝜙 = 𝑝/𝜌0. Integrating over the depth of the ocean and
using Leibniz’s rule (that is, ∇∫0𝜂𝐵 𝜙d𝑧 = ∫

0
𝜂𝐵
∇𝜙d𝑧 − 𝜙𝐵∇𝜂𝐵), gives

𝒇 × 𝒖 = −∇𝜙 − 𝜙𝑏∇𝜂𝑏 + 𝝉𝑤 − 𝝉𝑓, (21.104)

where 𝝉𝑤 is the stress at the surface (due mainly to the wind) and 𝝉𝑓 is the frictional stress at
the bottom, a hat denotes a vertical integral and 𝜙𝑏 is the pressure at 𝑧 = 𝜂𝑏, where 𝜂𝑏 is the 𝑧-
coordinate of the bottom topography. The 𝑥-component of (21.104) is

−𝑓𝑣 = −𝜕𝜙
𝜕𝑥
− 𝜙𝑏
𝜕𝜂𝑏
𝜕𝑥
+ 𝜏𝑥𝑤 − 𝜏𝑥𝑓 , (21.105)

and on integrating around a line of latitude the term on the left-hand side vanishes by mass con-
servation and we are left with

− 𝜙𝑏
𝜕𝜂𝑏
𝜕𝑥
+ 𝜏𝑥𝑤 − 𝜏𝑥𝑓 = 0, (21.106)

where overbars denote zonal averages. The first term is the bottom, or topographic, form drag,
encountered in Sections 3.6 and 19.6, and observations and numerical simulations indicate that
it is this, rather than the frictional term 𝜏𝑥𝑓 , that predominantly balances the wind stress.25 We
address the question of why this should be so in section 21.7.5.

The vorticity balance is similarly dominated by a balance between bottom form-stress curl and
wind-stress curl. Taking the curl of (21.104), noting that ∇ ⋅ 𝒖 = 0, gives

𝛽𝑣 = −𝐤 ⋅ ∇𝜙𝑏 × ∇𝜂𝑏 + curl𝑧𝝉𝑤 − curl𝑧𝝉𝑓. (21.107)

Now, on integrating over an area bounded by two latitude circles and applying Stokes’ theorem the
𝛽-term vanishes by mass conservation and we regain (21.106). This means that Sverdrup balance,
in the usual sense of 𝛽𝑣 ≈ curl𝑧𝝉𝑤, cannot hold in the zonal average: the left-hand side vanishes but
the right-hand side does not. The same could be said for the zonal integral of (21.107) across a
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gyre, but the two cases do differ: In a gyre Sverdrup balance can (in principle) hold overmost of the
interior, with mass balance being satisfied by the presence of an intense western boundary current.
In contrast, in a channel where the dynamics are zonally homogeneous then 𝑣must be, on average,
zero at all longitudes and form drag and/or frictional terms must balance the wind-stress curl in
a given water column. Sverdrup balance is thus a less useful foundation for channel dynamics —
at least zonally homogeneous ones — than it is for gyres. Of course, the real acc is not zonally
homogeneous, and may contain regions of poleward Sverdrup flow balanced by equatorward flow
in boundary currents along the eastern edges of sills and continents, and the extent to which Sver-
drup flow is a leading-order descriptor of its dynamics is a matter of geography (and debate!). See
also Section 21.7.6.

Even though topographic drag may be dominant in removing momentum, non-conservative
frictional terms cannot be neglected, for two reasons. First, they are the means whereby kinetic
energy is dissipated. Second, if there is a contour of constant orographic height encircling the do-
main (i.e., encircling Antarctica) then the form drag will vanish when integrated along it. However,
the same integral of the wind stress will not vanish, and therefore must be balanced by something
else. To see this explicitly, write the vertically integrated vorticity equation, (21.107), in the form

𝛽𝑣 + 𝐽(𝜙𝑏, 𝜂𝑏) = curl𝑧𝝉𝑤 − curl𝑧𝝉𝑓. (21.108)

If we integrate over an area bounded by a contour of constant orographic height (i.e., constant 𝜂𝑏)
then both terms on the left-hand side vanish, and the wind stress along that line must be balanced
by friction. In the real ocean there may be no such contour that is confined to the acc— rather,
any such contour would meander through the rest of the ocean; indeed, no such confined contour
exists in the idealized geometry of Fig. 21.19.

21.7.3 Form Drag and Baroclinic Eddies

How does the momentum put in at the surface by the wind stress make its way to the bottom of
the ocean where it may be removed by form drag? We saw in Section 21.6.2 that one mechanism is
by way of a mean meridional overturning circulation, with an upper branch in the Ferrel Cell and
a lower branch at the level of the sill, with no meridional flow between. However, the presence of
baroclinic eddies allows an eddy form drag to pass momentum vertically within the fluid. Let’s see
how that works.

We model the channel as a finite number of fluid layers, each of constant density and lying one
on top of the other — a ‘stacked shallow water’ model, and one equivalent to a model expressed in
isopycnal coordinates. Thewind provides a stress on the upper layer, which sets it intomotion, and
this in turn, via themechanismof formdrag, provides a stress to the layer below, and so on until the
bottom is reached. The lowest layer then equilibrates via form drag with the bottom topography
or via Ekman friction, and the general mechanism is illustrated in Fig. 21.25.

Recalling the results of Section 3.6, the zonal form drag at a layer interface is given by

𝜏𝑖 = −𝜂𝑖
𝜕𝑝𝑖
𝜕𝑥
= −𝜌0𝑓𝜂𝑖𝑣𝑖 , (21.109)

where 𝑝𝑖 is the pressure and 𝜂𝑖 is the displacement at the 𝑖-th interface (i.e., between the 𝑖-th and
(𝑖 + 1)-th layer as in Fig. 21.26), and the overbar denotes a zonal average. If we define the averaged
meridional transport in each layer by

𝑉𝑖 = ∫
𝜂𝑖−1

𝜂𝑖
𝜌0𝑣d𝑧, (21.110)
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Fig. 21.25 Eddy fluxes and form drag in a Southern Hemisphere channel, viewed from the south. Cold
(less buoyant) water flows equatorwards and warm water poleward, so that 𝑣′𝑏′ < 0. The pressure field
(dashed lines) provides a form drag on the successive layers, 𝑭𝑝, shown. At the ocean bottom the westward
form drag on the fluid arising through its interaction with the orography is equal and opposite to that of
the eastward wind stress at the top. The mass fluxes in each layer are given by 𝑣′ℎ′ ≈ −𝜕𝑧(𝑣′𝑏′/𝑁2). If the
magnitude of buoyancy displacement increases with depth then 𝑣′ℎ′ < 0.

then, neglecting the meridional momentum flux divergence (for reasons given in the next subsec-
tion), the time and zonally averaged zonal momentum balance for each layer of fluid are:

−𝑓𝑉1 = 𝜏𝑤 − 𝜏1 = 𝜂1
𝜕𝑝1
𝜕𝑥
+ 𝜏𝑤, (21.111a)

−𝑓𝑉𝑖 = 𝜏𝑖−1 − 𝜏𝑖 = −𝜂𝑖−1
𝜕𝑝𝑖−1
𝜕𝑥
+ 𝜂𝑖
𝜕𝑝𝑖
𝜕𝑥
, (21.111b)

−𝑓𝑉𝑁 = 𝜏𝑁−1 − 𝜏𝑁 = −𝜂𝑁−1
𝜕𝑝𝑁−1
𝜕𝑥
+ 𝜂𝑏
𝜕𝑝𝑏
𝜕𝑥
− 𝜏𝑓, (21.111c)

where the subscripts 1, 𝑖 and 𝑁 refer to the top layer, an interior layer, and the bottom layer, re-
spectively. Also, 𝜂𝑏 is the height of the bottom topography and 𝜏𝑤 is the zonal stress imparted by
the wind which, we assume, is confined to the uppermost layer. The term 𝜏f represents drag at the
bottom due to Ekman friction, but we have neglected any other viscous terms or friction between
the layers.

The vertically integrated meridional mass transport must vanish, and thus summing over all
the layers (21.111) becomes

0 = 𝜏𝑤 − 𝜏𝑓 − 𝜏𝑁, (21.112)

or, noting that 𝜏𝑁 = −𝜂𝑏𝜕𝑝𝑏/𝜕𝑥,

𝜏𝑤 = 𝜏𝑓 − 𝜂𝑏
𝜕𝑝𝑏
𝜕𝑥
. (21.113)
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Thus, the stress imparted by the wind (𝜏𝑤) may be communicated vertically through the fluid by
form drag, and ultimately balanced by the sum of the bottom form stress (𝜏𝑁) and the bottom
friction (𝜏𝑓).

Momentum dynamics in height coordinates
We now look at these same dynamics in height coordinates, using the quasi-geostrophic tem for-
malism, and it may be helpful to review Section 10.3 before proceeding. As in (10.61), we write
the zonally averaged momentum equation in the form

− 𝑓0𝑣∗ = ∇𝑚 ⋅ 𝓕 +
𝜕𝜏
𝜕𝑧
, (21.114)

where 𝑣∗ = 𝑣 − 𝜕𝑧(𝑣′𝑏′/𝑏𝑧) is the residual meridional velocity, 𝜏 is the zonal component of the
kinematic stress (wind-induced and frictional, and typically important only in an Ekman layer at
the surface and in a frictional layer at the bottom) and 𝓕 is the Eliassen–Palm flux, which satisfies

∇𝑚 ⋅ 𝓕 = −
𝜕
𝜕𝑦
𝑢′𝑣′ + 𝜕
𝜕𝑧
( 𝑓0
𝑁2
𝑣′𝑏′) = 𝑣′𝑞′. (21.115)

Now, if the horizontal velocity and buoyancy perturbations are related by 𝑣′ ∼ 𝑏′/𝑁 (meaning
available potential energy and kinetic energy are roughly similar, see also Section 12.4), then the
two terms comprising the potential vorticity flux scale as

𝜕
𝜕𝑦
𝑢′𝑣′ ∼ 𝑣

′2

𝐿𝑒
, 𝜕
𝜕𝑧
(𝑓0
𝑣′𝑏′

𝑏𝑧
) ∼ 𝑣

′2

𝐿𝑑
, (21.116)

where 𝐿𝑒 is the scale of the eddies and 𝐿𝑑 is the deformation radius. If the former is much larger
than the latter, as we might expect in a field of developed geostrophic turbulence (and as is ob-
served in the acc), then the potential vorticity flux is dominated by the buoyancy flux and (21.114)
becomes

−𝑓0𝑣∗ ≈
𝜕𝜏
𝜕𝑧
+ 𝜕
𝜕𝑧
(𝑓0
𝑣′𝑏′

𝑏𝑧
). (21.117)

In the ocean interior the frictional terms, 𝜕𝜏/𝜕𝑧, are small, and (21.117) represents a balance be-
tween the Coriolis force on the residual flow and the form stress associated with the vertical com-
ponent of the EP flux (an association further explained in Section 10.4.3).

If we integrate (21.117) over the depth of the channel the term on the left-hand side vanishes
and we have

𝜏𝑤 = 𝜏𝑓 − [𝑓0
𝑣′𝑏′

𝑏𝑧
]
0

−𝐻
, (21.118)

where 𝜏𝑤 is the wind stress and 𝜏𝑓 is the frictional stress at the bottom (both divided by 𝜌0). Equa-
tion (21.118) expresses essentially the same momentum balance as (21.113). Thus, the EP flux
expresses the passage of momentum vertically through the water column, the momentum being
removed at the bottom through frictional stresses and/or form drag with the orography.

Mass fluxes and thermodynamics
Associated with the form drag is a meridional mass flux in each layer, which in the layered model
appears as𝑉𝑖 (a thickness flux) in each layer. The satisfaction of the momentum balance at a partic-
ular latitude goes hand-in-hand with the satisfaction of the mass balance. Above any topography
the Eulerian mean momentum equation is, with quasi-geostrophic scaling and neglecting eddy
momentum fluxes,

𝑓0𝑣 =
𝜕𝜏
𝜕𝑧
, (21.119)
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Snapshot of eddying low
Residual, or 

thickness-weighted  

averaged low

Fig. 21.26 An example of the meridional flow in an eddying channel. The eddying flow may be
organized such that, even though at any given level the Eulerian meridional flow may be small,
there is a net flow in a given isopycnal layer. The residual (𝑣∗) and Eulerian (𝑣) flows are related by
𝑣∗ = 𝑣 + 𝑣′ℎ′/ℎ; thus, the thickness-weighted average of the eddying flow on the left gives rise to
the residual flow on the right, where 𝜂𝑖 denotes the mean elevation of the isopycnal interface 𝜂𝑖.

where 𝑣 is the zonally averaged meridional velocity and 𝜏 is the zonal component of the kinematic
stress. The zonally averaged meridional flow is thus purely ageostrophic and since the stress, 𝜏,
is fairly constant in the interior, the mean meridional flow is non-zero only near the surface (i.e.,
equatorward Ekman flow) and near the ocean bottom, where the flow can be supported by friction
and/or form drag. Even in an eddying flow, the Eulerian circulation is primarily confined to the
upper Ekman layer and a frictional or topographically interrupted layer at the bottom, as sketched
in Fig. 21.27. This is a perfectly acceptable description of the flow, and is not an artifact in any way.

However, and analogously to the atmospheric Ferrel Cell (Sections 14.7 and 15.2.2), if the flow
is unsteady this circulation does not necessarily represent the flow of water parcels, nor does it
imply that water parcels cross isopycnals, asmight be suggested by the dark blue circulation (𝜓Euler)
in Fig. 21.27. The flow of parcels is better represented by the residual, or thickness-weighted, flow,
and as sketched in Fig. 21.26 and Fig. 21.27 there can be a net meridional residual flow in a given
layer (i.e., of a given water mass type) even when the net meridional Eulerian flow at the level of
mean height of the layer is zero.

The vertically integrated residual mass flux must vanish, and even though one component of
this— the equatorward Ekmanflow— is determinedmechanically, the overall sense of the residual
circulation is not determined by the momentum balance alone: thermodynamic effects play a role.
The zonally averaged thermodynamic equation may be written in tem form as

𝜕𝑏
𝜕𝑡
+ 𝐽(𝜓∗, 𝑏) = 𝑄[𝑏], (21.120)

where 𝐽(𝜓∗, 𝑏) = (𝜕𝑦𝜓∗)(𝜕𝑧𝑏) − (𝜕𝑧𝜓∗)(𝜕𝑦𝑏) = 𝑣∗𝜕𝑦𝑏 + 𝑤∗𝜕𝑧𝑏, 𝜓∗ is the streamfunction of the
residual flow and 𝑄[𝑏] represents heating and cooling, which occur mainly at the surface. In the
ocean interior and in a statistically steady state we therefore have

𝐽(𝜓∗, 𝑏) = 0, (21.121)
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by the eastward winds, the bolus circulation opposes it,
and the net, or residual, circulation is nearly along isopy-
cnals.26

the general solution of which is 𝜓∗ = 𝐺(𝑏), where 𝐺 is an arbitrary function. That is, the interior
residual flow is along isopycnals (Fig. 21.27). At the surface, however, the flow is generally not
adiabatic, because of heat exchange with the atmosphere, and so the residual flow can be across
isopycnals. The sense of the subsurface circulation determines how the form drag varies with
depth; if the residual flow were zero, for example, then, either from (21.111) or from (21.117), we
see that the form drag must be constant with depth.

21.7.4††† An Idealized Adiabatic Model

We finally consider a simple but rather illuminating model of the acc.27 The simplifying assump-
tion we make is that the flow is adiabatic everywhere; it then follows that the net overturning, as
given by the residual circulation, is zero. We can see this by first noting that in a statistically steady
state the flow satisfies (21.121), implying that the residual flow is along isopycnals. However, if
there is a meridional buoyancy gradient at the surface (where isopycnals outcrop) there can be no
surface residual flow (because this would be cross-isopycnal); it then follows that there can be no
net flow along isopycnals in the interior, because if these outcrop there would be a net fluid source,
and hence diapycnal flow, at the surface. This idealized limit has thus led to the ‘vanishing of the
Deacon Cell’. In reality the flow is not adiabatic near the surface and the residual flow will not
vanish, but it is likely to be weaker than either the Eulerian or the eddy-induced flow (as sketched
in Fig. 21.27).

The zonal momentum equation in this limit follows from (21.117), which with 𝑣∗ = 0 gives

𝜕𝜏
𝜕𝑧
≈ − 𝜕
𝜕𝑧
(𝑓0
𝑣′𝑏′

𝑏𝑧
) . (21.122)

The equivalent balance for the Eulerian flow is, using the definition of 𝑣∗,

− 𝑓0𝑣 =
𝜕𝜏
𝜕𝑧

→ 𝑓0𝑣 = 𝑓0
𝜕
𝜕𝑧
(𝑣
′𝑏′

𝑏𝑧
) . (21.123a,b)

These equations represent dynamical balances; they do not follow from the momentum equation
withoutmaking additional assumptions, in this case that 𝑣∗ = 0. In the residual equation, (21.122),
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the wind stress is balanced by the divergence of the Eliassen–Palm flux, which is dominated by
the contribution from the buoyancy flux, and in the ocean interior where the stress is small the
meridional buoyancy flux will be constant with height. Equation (21.123b) represents a balance
between the Coriolis force on the equatorward flow and form drag. If the frictional stress is small
in the interior then the form drag does not vary in the vertical and the right-hand side of (21.123)
is small. The zonally averaged meridional flow in the interior is then also small, and the equatorial
flow in the top Ekman layer is balanced by a return flow at the bottom of the ocean involving
topographic form stress or a bottom Ekman layer.

Integrating (21.122) from the surface (where 𝜏 = 𝜏𝑤) to a stress-free level in the interior (where
𝜏 = 0) gives

𝜏𝑤 = 𝑓0
𝑣′𝑏′

𝑏𝑧
, (21.124)

if the buoyancy flux at the surface is small. If we are now willing to parameterize the eddy fluxes
in terms of the mean flow, then we can predict the stratification. Thus, let 𝑣′𝑏′ = −𝜅 𝜕𝑏/𝜕𝑦, where
𝜅 is an eddy diffusivity, and noting that 𝑠 = −𝑏𝑦/𝑏𝑧 is the slope of the isopycnals, we find

𝜏𝑤 = 𝜅𝑓0𝑠 = 𝜅
𝑓20
𝑏𝑧
𝜕𝑢
𝜕𝑧
, (21.125)

where the second equality uses thermal wind balance. Thus, given 𝜅, we can predict the isopycnal
slope [𝑠 = 𝜏𝑤/(𝜅𝑓0)] and, potentially, the total baroclinic transport of the acc as a function of the
wind stress. The sense of the residual circulation can be inferred if the diabatic fluxes at the surface
are known, but at the same time these fluxes depend in a complicated way on both the lateral eddy
fluxes and the general circulation itself. We come back to this in Sections 21.8 and 21.9.

21.7.5 Form Stress and Ekman Stress at the Ocean Bottom
Earlier, we noted that the stress at the ocean bottom is observed to be dominated by form stress,
rather than Ekman friction, in the acc. A simple scaling argument helps understand why this
should be. The form stress scales like

𝜏form ∼ 𝜂𝑏
𝜕𝑝𝑏
𝜕𝑥
∼ 𝜂𝑏𝜌0𝑈𝑓, (21.126)

wherewe have used geostrophic balance and𝑈 is a scaling for the horizontal velocity. The frictional
stress due to an Ekman layer (Section 5.7) scales like

𝜏Ekman ∼ 𝜌0𝐴
𝜕𝑢
𝜕𝑧
∼ 𝜌0𝐴𝑈
𝑑
∼ 𝜌0𝑑𝑈𝑓, (21.127)

where 𝐴 is the eddy kinematic viscosity and 𝑑 = √𝐴/𝑓 is the Ekman layer thickness. The ratio of
these two stresses thus scales as 𝜏form

𝜏Ekman
∼ 𝜂𝑏
𝑑
. (21.128)

We therefore expect the form stress to dominate the Ekman stress if the variations in topography
are greater than the Ekman layer thickness, and if the flow goes over the topography rather than
around it. In the acc the topography is hundreds or even thousands of metres high whereas the
bottom Ekman layer may be of order tens of metres, and furthermore the predominantly eastward
flow must (unlike the situation in gyre circulations) go over the topography. Thus, form stress
dominates the frictional, Ekman layer, stress at the bottom of the acc.
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Fig. 21.28 Neutral density in the Atlantic at 25° W from woce. A weakly stratified water mass at
mid-depth, roughly between the 28 and 28.1 isopycnals, is associated with the inflow of nadw in
the Atlantic Ocean. The contour intervals are 0.1 and 0.05 kg m-3 for isopycnals greater and lower
than 27.5 kg m-3, coloured green and red, respectively.

21.7.6 Differences Between Gyres and Channels
In the dynamics of the acc, the wind stress itself seems to play an important role, whereas in
our discussion of gyres in chapter 19 the wind stress curl was dominant. What is the root of this
difference?28 Suppose that we change the wind stress, but not its curl, in a closed basin. The
vertically integrated gyral flow, as given for example by the Stommel solution (19.39) or its two-
gyre counterpart, does not change at all. However, the vertical structure of this flow will in general
change; for example, if the wind is made uniformly more eastward, there will be a corresponding
increase in the equatorward flux in the Ekman layer thatmust return polewards at depth (assuming
that the western boundary current balances only the Sverdrup flow). At the same time, the added
force from the windmust be balanced by an increased pressure difference between the western and
eastern boundaries. This may be achieved if the sea-surface tilts upwards to the east, so producing
a net (vertically integrated) poleward geostrophic flow. The subsurface isopycnal slopes may then
adjust in order to reduce this flow to near zero in the abyss. The added force provided by the basin
walls on the fluid in the basin is a kind of form drag (rather like the force provided by the sill in
Section 21.6), and integrated around the basin this force must be equal and opposite to the force
supplied by the wind. In contrast, in a channel adding a constant wind produces a direct change in
its zonal transport. This is because the wind stress is balanced by form drag and bottom friction,
and both of these depend on the zonal flow at the channel bottom.

21.8††† A DYNAMICAL MODEL OF THE RESIDUAL OVERTURNING CIRCULATION
In the last section it became clear that the acc is a region of strongly eddying activity, and one effect
of these eddies is to reduce the slope of the isopycnals, so reducing the available potential energy
of the flow. Thus, the sketches of Fig. 21.21 and Fig. 21.22 do not properly represent the state of
the channel region: not only do the isopycnals slope, but the southward flowing water parcels can
enter the channel region above any sill. That is, the zonally averaged residual meridional flow can
be non-zero, and the deep stratification can be non-zero, even without topography. In this section
we seek to build a model that combines our view of the acc, as described in Section 21.7, with
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Fig. 21.29 Overturning circulations in theAtlantic and PacificOceans as determinedby an inverse
calculation. South of about 35° the circulation is not a true streamfunction, because of the open
boundaries, and this may lead to errors, especially in the Pacific. (See Fig. 21.1 for another Atlantic
estimate.)

the view of the partially wind-driven overturning circulation described in Section 21.6. In spite of
these additions the model is still incomplete, for it treats only one basin, and it has ad hoc aspects
in its treatment of eddy effects.

Our model is partially motivated by the plot of the stratification shown in Fig. 21.28 and the
overturning circulations of Fig. 21.29, as abstracted in Fig. 21.30. Although nominally a sketch of
the global moc, of the individual basins it most resembles the circulation of the Atlantic where
there are two main circulating masses of water, North Atlantic Deep Water (nadw) and Antarc-
tic Bottom Water (aabw), as seen in Fig. 21.29. The nadw outcrops in high northern latitudes
and high southern latitudes, and aabw just at high Southern latitudes. The Pacific overturning
circulation (Fig. 21.29) is rather different, for here there is really no mid-depth cell corresponding
to nadw; there is essentially only a bottom cell of Antarctic bottom water spreading northward.
Finally, we note that isopycnals are flat over most of the ocean, but have a fairly uniform slope in
the Southern Ocean. (Figure 21.28 shows the Atlantic; the situation is similar for the Pacific.) We
will now construct a dynamical model that attempts to describe these features.30

Let us first imagine there is a wall at the equator, and make a model of the circulation in the
Southern Hemisphere, that is, essentially of aabw. There’s an obvious connection to the Indian
Ocean and, if a little less obvious at the moment, to the Pacific.

21.8.1 Model Phenomenology
We divide the basin into two regions, a Southern Channel and a basin, as in Fig. 21.31 (see also the
shaded box on page 850). In the channel the isopycnals slope, and we anticipate a balance between
wind effects and baroclinic instability: in the absence of eddies the isopycnals are vertical, as in
Fig. 21.21, and baroclinic activity causes the isopycnals to slump. In the basin region we invoke an
ansatz that the isopycnals are flat — the model applies below the thermocline where wind effects
cause stratification. Wind over the channel induces a northwards Ekman flux, and the return flow
occurs at the bottom of the channel, as in the thick arrows in Fig. 21.31, because in the interior the
flow is nearly geostrophic and the zonally-averaged geostrophic meridional flow is zero. However,
it is the residual circulation that carries water properties and that will connect to the basin flow,
and thermodynamic considerations suggest that the flow will circulate along the dashed lines in
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Fig. 21.30 The overturning circulation of the ocean and the main processes that produce it —
winds, mixing, baroclinic eddies and surface buoyancy fluxes.29 The sketch is most representative
of the Atlantic, which is the major contributor to the global average. Observational views are given
in Fig. 21.18 and Fig. 21.29.

Fig. 21.31. In the basin there will be an advective-diffusive balance in the vertical, and the flow will
be non-zero only if the diffusivity is non- zero. This flow should connect smoothly to the more
adiabatic flow in the channel. Let us see how the equations allow this to be accomplished, and if
we can obtain estimates for the strength and structure of the flow.

21.8.2 Equations of Motion
We will use zonally-averaged equations of motion and write them in residual, or tem, form be-
cause the treatment of mesoscale eddies is more convenient and the equations directly predict the
velocities that advect the tracers. Thus, following the methodology of Section 10.3, we define a
residual flow such that

𝑣∗ = 𝑣 − 𝜕
𝜕𝑧
( 1
𝑁2
𝑣′𝑏′) , 𝑤∗ = 𝑤 + 𝜕

𝜕𝑦
( 1
𝑁2
𝑣′𝑏′) , (21.129)

where 𝑁2 = 𝜕𝑏/𝜕𝑧, which is assumed to vary only very slowly. The residual velocities 𝑣∗ and
𝑤∗ more nearly represent the trajectories of fluid parcels than the Eulerian velocities, 𝑣 and 𝑤.
There are no fluxes in the buoyancy equation and only the potential vorticity flux, 𝑣′𝑞′, need be
parameterized.

We will further suppose that the large scale flow satisfies planetary-geostrophic scaling, and so
we drop the time derivative in themomentum equation and assume the zonal flow is in geostrophic
wind balance. Including forcing and dissipation terms, our equations of motion become

− 𝑓𝑣∗ = 𝑣′𝑞′ + 𝜕𝜏
𝜕𝑧
, 𝜕𝑏
𝜕𝑡
+ 𝑣∗ 𝜕𝑏
𝜕𝑦
+ 𝑤∗ 𝜕𝑏
𝜕𝑧
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2
. (21.130a,b)

The velocities are non-divergent and may be represented by a streamfunction so that (𝑣∗, 𝑤∗) =
(−𝜕𝜓/𝜕𝑧, 𝜕𝜓/𝜕𝑦), and we will assume that the residual velocities themselves satisfy the boundary
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Fig. 21.31 A model of the single hemisphere meridional overturning circulation, crudely repre-
senting an idealized Antarctic Bottom Water (aabw) cell. In the Atlantic this cell sits below the
interhemispheric North Atlantic Deep Water Cell, but it sits alone in the Pacific and India Oceans.
Thin solid lines are the isopycnals, the dashed black line is a residual overturning streamfunction.
The thick dark blue arrows are the Eulerian circulation, namely the top and bottom Ekman trans-
port and the wind-driven upwelling.

conditions of no normal flow. The zonal wind, 𝑢, may be obtained from thermal wind balance,
𝑓𝜕𝑢/𝜕𝑧 = −𝜕𝑏/𝜕𝑦, and the stress, 𝜏, is only non-zero near the top (wind-stress) and bottom
(Ekman drag). We will henceforth drop the ∗ notation, and all variables are understood to be
residuals and zonal averages. These equations apply in both the channel and basin regions, but
with different dominant balances.

Equations in the channel
Theright-hand side of (21.130a) contains the eddy flux of potential vorticitywhichweparameterize
using an eddy diffusivity,

𝑣′𝑞′ = −𝐾𝑒
𝜕𝑞
𝜕𝑦
, (21.131)

where 𝐾𝑒 is the eddy diffusivity. (It is more-or-less a ‘Gent–McWilliams’ coefficient, as in Section
13.6.) The Coriolis parameter is almost constant in the channel, and we denote it 𝑓𝑆. For the
large-scale ocean the potential vorticity is given by

𝑞 ≈ 𝑓𝑆
𝜕
𝜕𝑧
( 𝑏
𝑏𝑧
) , so that 𝜕𝑞

𝜕𝑦
≈ 𝑓𝑆
𝜕
𝜕𝑧
(
𝑏𝑦
𝑏𝑧
) = −𝑓𝑆

𝜕𝑆
𝜕𝑧
, (21.132)

where 𝑆 = −𝑏𝑦/𝑏𝑧 is the slope of the isopycnals (and the similarity with the Gent–McWilliams
scheme is now clear). The potential vorticity flux is then given by

𝑣′𝑞′ ≈ 𝑓𝑆𝐾𝑒
𝜕𝑆
𝜕𝑧
, (21.133)
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and the momentum equation becomes

− 𝑓𝑆𝑣 = 𝑓𝑆𝐾𝑒
𝜕𝑆𝑏
𝜕𝑧
+ 𝜕𝜏
𝜕𝑧
. (21.134)

Since 𝑣∗ = −𝜕𝜓/𝜕𝑧 we integrate this from the top to a level 𝑧 and obtain

𝜓 = −𝜏𝑤
𝑓𝑆
+ 𝐾𝑒𝑆, (21.135)

where both 𝑓𝑆 and 𝑆 are negative and 𝜏𝑆 is the surface kinematic stress in the channel. We have
assumed 𝜓 = 0, 𝑆 = 0 at the surface (the base of the mixed layer) and 𝜏 = 0 in the interior.

The buoyancy equation in terms of streamfunction is

𝒗 ⋅ ∇𝑏 = 𝜅𝑣
𝜕2𝑏
𝜕𝑧2

or 𝜕𝜓
𝜕𝑦
𝜕𝑏
𝜕𝑧
− 𝜕𝜓
𝜕𝑧
𝜕𝑏
𝜕𝑦
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2
, (21.136)

which can be written as

𝜕𝜓
𝜕𝑦
+ 𝑆𝜕𝜓
𝜕𝑧
= 𝜅𝑣
𝜕2𝑧𝑏
𝜕𝑧𝑏
. (21.137)

The boundary condition on 𝜓 for this equation will be supplied by the basin! The other boundary
condition we will need is the buoyancy distribution at the top, and so we specify

𝑏(𝑦, 𝑧 = 0) = 𝑏0(𝑦). (21.138)

Equations in the basin
In the basin the slope of the isopycnals is assumed zero and (21.137) becomes the conventional
upwelling diffusive balance,

𝑤𝜕𝑏
𝜕𝑧
= 𝜅𝜕
2𝑏
𝜕𝑧2

or 𝜕𝜓
𝜕𝑦
𝜕𝑏
𝜕𝑧
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2
. (21.139)

If we integrate this from the edge of the channel, 𝑦 = 0, to the northern edge, 𝑦 = 𝐿, we obtain

𝜓|𝑦=0 = −𝜅𝑣𝐿
𝑏𝑧𝑧
𝑏𝑧
. (21.140)

This equation then becomes the needed boundary condition for the equations in the channel.

21.8.3 Scaling
The above equations do not give up analytic solutions, but we can use them to obtain estimates of
the flow strength and structure. Let us scale the equations by letting

𝑧 = ℎ𝑧, 𝑦 = 𝑙𝑦, 𝜏𝑆 = 𝜏0𝜏𝑆, 𝑓𝑆 = 𝑓𝑆𝑓, 𝜓 =
𝜏0
𝑓𝑆
�̂�, 𝑆 = ℎ

𝑙
𝑆, (21.141)

where 𝑓𝑆 = |𝑓𝑆|, a hat denotes a nondimensional value and ℎ is a characteristic vertical scale such
that 𝑆 ∼ ℎ/𝑙, and this will emerge as part of the solution.
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A Model of the Meridional Overturning Circulation

The essential features of the model of the moc of Sections 21.8 and 21.9 are:
Formulation
• The model is zonally averaged, in a single basin, with simple geometry: a zonally re-

entrant channel at high latitudes, with an enclosed basin between it and the northern
boundary. The effects of wind-driven gyres are neglected; the dynamics in the enclosed
basin can be regarded as being below the main thermocline.
• The equations solved are the planetary geostrophic equations, in a transformed Eule-

rianmean form, with the effects ofmesoscale eddies being parameterizedwith a simple
down-gradient buoyancy flux scheme in the momentum equation.
• The ocean is divided into three regions: a northern convective region, a cross-

equatorial basin region, and a southern channel.
• The dynamics are treated separately in these three regions, and the solutions matched

at the boundaries:
(i) In the southern channel there is a balance between wind stress (causing isopyc-

nals to steepen) and the mesoscale eddies, which have a flattening effect. Buoy-
ancy satisfies the full nonlinear advective-diffusive equation.

(ii) In the basin region the isopycnals are assumed flat, and by integrating merid-
ionally over the basin this region essentially becomes a boundary condition for
the southern channel. The buoyancy equation reduces to a vertical advective-
diffusive balance (𝑤𝜕𝑏/𝜕𝑧 = 𝜅 𝜕2𝑏/𝜕𝑧2).

(iii) In the northern convective region the isopycnals are vertical, descending suffi-
ciently far down to connect to the corresponding horizontal isopycnals of the
basin. If the northern region is too warm to allow this, the basin isopycnals will
extend all the way to the northern boundary.

Properties and Predictions

• If the surface boundary conditions on buoyancy permit, there is an isopycnal pathway
from the northern convective region to the southern channel. For small values of dif-
fusivity flow can then circulate, largely adiabatically, from high northern latitudes to
high southern latitudes, mechanically pumped by the wind over the southern channel.
This may roughly correspond to flow in the Atlantic.
• If the boundary conditions are such that the surface of the northern region is too

buoyant, then there is no interhemispheric wind-driven mid-depth circulation and no
northern convection, roughly corresponding to flow in the Pacific and Indian Ocean.
• For large values of diffusivity, the flow sinks at high latitudes and upwells in low lati-

tudes, as in a conventional buoyancy/mixing-driven circulation.
• Beneath the wind-driven mid-depth cell, a diffusive cell corresponding to Antarctic

BottomWater forms. Its strength is determined by the diapycnal diffusivity and surface
meridional buoyancy gradients.
• The southern channel there is convection at the southern end and elsewhere the isopy-

cnal slope is determined by a balance between wind forcing and eddy effects.
• The effects ofmesoscale eddies are parameterized by an eddy diffusivity, but the overall

model framework is not fundamentally dependent on that.
• The model cannot account for inter-basin pathways of water, for example between the

Atlantic and Pacific Oceans.
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If we have scaled properly then variables with hats on are of order one. The nondimensional
equations of motion are then

Buoyancy evolution: 𝜕𝑦�̂� + 𝑆 𝜕𝑧�̂� = 𝜖 (
𝑙
𝐿
) 𝜕𝑧𝑧�̂�
𝜕𝑧�̂�
, (21.142a)

Momentum balance: �̂� = −𝜏𝑆
𝑓
+ 𝛬𝑆, (21.142b)

Boundary condition: �̂�|𝑦=0 = −𝜖
𝜕𝑧𝑧�̂�
𝜕𝑧�̂�
, (21.142c)

where

𝛬 = Eddies
Wind
= 𝐾𝑒
𝜏0/𝑓𝑆

ℎ
𝑙
, 𝜖 = Mixing

Wind
= 𝜅𝑣
𝜏0/𝑓𝑆

𝐿
ℎ
. (21.143a,b)

These are two important nondimensional numbers, and we can obtain estimates of their values by
using some observed values for the other parameters. Let us take

ℎ = 1 km, 𝜅𝑣 = 10−5m2 s−1, 𝐾𝑒 = 103m2 s−1, 𝜌0 = 103 kgm−3,
𝜏0 = 0.1Nm−2/𝜌0 = 10−4Nmkg−1, 𝑓𝑆 = 10

−4 s−1, 𝐿 = 10 000 km, 𝑙𝑠 = 1000km,
(21.144)

and we find

𝛬 ≈ 1, 𝜖 ≈ 0.1. (21.145)

These values come with large error bars: the diffusivity, 𝜅𝑣, may be much larger in the abyss, and
the eddy coefficient 𝐾𝑒 is very poorly constrained (indeed, it is a property of the flow itself, not
the fluid). Finally, note that 𝛬 and 𝜖 are not independent of each other for they both depend on
the vertical scale of stratification, ℎ, which is a part of the solution. To obtain some theoretical
estimates of ℎ we look at some limiting cases.

The small diffusion limit
Suppose that mixing is small and that 𝜖 ≪ 1. We can then require that 𝛬 = 1 in order that the
eddy-induced circulation nearly balance the wind-driven circulation (because the diffusive term
is small), whence the vertical scale ℎ is given by

ℎ
𝑙
= 𝜏0/𝑓𝑆
𝐾𝑒
. (21.146)

As 𝐾𝑒 diminishes ℎ becomes larger, meaning that the isopycnals are near vertical. Using (21.146)
in (21.143b) gives

𝜖 = 𝜅𝑣𝐾𝑒
(𝜏0/𝑓𝑆)2

𝐿
𝑙
. (21.147)

This is an appropriate nondimensional measure of the strength of the diapycnal diffusion in the
ocean. Using (21.142c) we see that �̂� ∼ 𝜖 so that the dimensional strength of the circulation goes
as

𝛹 = 𝜖𝜏0
𝑓0
= 𝜅𝑣
𝐾𝑒
𝜏0/𝑓𝑆
𝐿
𝑙
. (21.148)
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Another way to obtain this is to use the fact that for weak diffusion the balance in the dimensional
momentum equation is between wind forcing and eddy effects (because they must nearly cancel)
so that

𝜏𝑤
𝑓
∼ 𝐾𝑒𝑆, or equivalently ℎ

𝑙
∼ 𝜏𝑤
𝐾𝑒𝑓𝑆
. (21.149a,b)

Advective-diffusive balance in the basin gives

𝜕𝜓
𝜕𝑦
𝜕𝑏
𝜕𝑧
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2

whence 𝛹 = 𝜅𝑣𝐿
ℎ

(21.150a,b)

and (21.149b) and (21.150b) together give (21.148).

The high diffusion limit
To explore the high diffusion limit we take 𝜖 ≫ 1. The nondimensional strength of the circulation
is given by

�̂� = 𝒪(𝜖) ≫ 1. (21.151)

The circulation is now ‘strong’, since �̂� ≠ 𝒪(1). Dimensionally we still have that

𝛹 = 𝜖𝜏0
𝑓𝑆

or 𝛹 = 𝜅𝑣𝐿
ℎ

(21.152a,b)

but ℎ and 𝜖 will be different than in the low diffusion limit. Now, if �̂� ∼ 𝜖 ≫ 1 the diffusion driven
circulation in the basin cannot be matched by a purely wind-driven circulation in the channel,
since the latter is 𝒪(1). Put more physically, as we increase diffusivity the circulation increases
in strength, but this cannot connect smoothly to the flow in the channel unless the eddy-driven
circulation changes, because the wind-driven circulation is externally fixed. We thus match the
basin circulation to an eddy-driven channel circulation and require 𝛬 = 𝒪(𝜖). In particular, if we
set 𝛬 = 𝜖 then

𝜖 = 𝛬 = √ 𝐾𝑒𝜅𝑣𝐿(𝜏0/𝑓𝑆)2𝑙
. (21.153)

This is the square root of the expression for 𝜖 in the weak diffusion limit. Using (21.153) and
(21.152a) we find

ℎ
𝑙
= √𝜅𝑣𝐿𝐾𝑒𝑙

, 𝛹 = √𝐾𝑒𝜅𝑣𝐿
𝑙
. (21.154a,b)

These are expressions for the characteristic depth and strength of the circulation in a strongmixing
regime.

Meaning of the limits
If diffusion is weak the stratification is set by a trade-off between the eddies and wind and this
determines ℎ, as in (21.146), and this does not involve diapycnal diffusion at all. However, the
strength of the circulation is determined by an upwelling-diffusion balance which gives the esti-
mate 𝜓 ∼ 𝜅𝑣𝐿/ℎ. Since ℎ is independent of diffusivity we obtain a circulation strength that is
linearly proportional to diffusivity, as in (21.148). Since diffusion is, in this limit, small then the
circulation is weak, even in the southern channel. The weakness arises because there is a cancella-
tion between the wind stress and eddy terms in (21.135), and a total cancellation would lead to the
so-called ‘vanishing of the Deacon Cell — the Deacon Cell here being the residual overturning in
the southern channel. It is interesting that the circulation gets weaker as the wind gets stronger;
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this counter-intuitive effect arises because thewind steepens the isopycnals and deepens the stratifi-
cation, so that the diffusive term (𝜅𝑣𝑏𝑧𝑧) in the basin gets smaller. From an asymptotic perspective,
in the small 𝜖 limit the residual circulation is zero to lowest order, and at the next order the flow is
parallel to the isopycnals in the channel (except in the mixed layer). We will see in the next section
that the Deacon cell need not vanish, even in the limit of weak diffusion, if there is a northern
source of water.

In the strong diffusion case the diffusivity itself directly affects the stratification, and conse-
quently we get a weaker dependence of the circulation strength on 𝜅𝑣. In this limit diapycnal mix-
ing deepens the isopycnals in the basin away from the channel, and this deepening in turn means
that the diffusion has a weaker effect. Thus, although the circulation is stronger than in the weak
diffusion case it has a weaker dependence on diffusivity, to the one half power in fact (21.154b).
The second consequence of the deepening is that the isopycnals are steeper in the channel, with
the steepening being balanced by the enhanced slumping effects of baroclinic instability, with the
wind then only having a secondary effect.

Finally, instead of varying diffusivity we can think of the wind changing. In the weak wind
limit the circulation is diffusively driven and independent of the wind strength, as in (21.154b). In
the strong wind limit the circulation, as noted above, actually decreases as the wind increases, but
still remains proportional to the diapycnal diffusivity 𝜅𝑣.

21.9††† A MODEL OF THE INTERHEMISPHERIC CIRCULATION
We now introduce another ‘water mass’ into the mix — North Atlantic Deep Water, or nadw. We
thus divide the ocean into three regions as sketched in Fig. 21.32, namely:
(i) a southern channel (south of about 50° S) where, as before, we expect a balance between

eddy effects and wind effects;
(ii) a basin region (from about 50° S to, say, 60°N), where the isopycnals are fairly flat;
(iii) a northern convective region (north of 60°N) in which convection produces vertical isopy-

cnals that connect with those in the basin.
Although the dynamics of all three regions are locally different, theymust act in concert to produce
a dynamically consistent circulation. The main difference, and it is an important one, between
this model and the previous one is the presence of an interhemispheric cell that, we will find, is
primarily wind driven, and that (for realistic parameter values) sits on top of the lower cell. In the
presentation that followswe focus our description on the northern convective region and the upper
cell, for the dynamics of the lower cell are very similar to those of the previous section. Further, we
seek only scaling relations rather than full analytic or semi-analytic solutions.31 We use lower case
letters (e.g., ℎ, 𝜓) to denote field variables and upper case symbols (e.g., 𝐻, 𝛹) for representative
values.

21.9.1 Model Phenomenology
Theupper cell has similar characteristics to the wind-driven cell sketched in Fig. 21.22, but we now
require the flow in the basin to connect smoothly to an eddy-rich southern channel region, in a
similar manner to that described in the previous section. We also suppose that in the northern
region the interior flow connects to the surface by way of convection. To see how this occurs,
consider a given isopycnal, 𝑏0 say, that outcrops at the surface in the southern channel, slopes
down in the channel and becomes horizontal in the basin. If the surface values of 𝑏 in the northern
convective region are all larger (warmer) than 𝑏0 then the isopycnal never outcrops in the north;
rather, it continues northward until it intersects the northern wall. If, on the other hand, at some
latitude there is a latitude, 𝑦𝑛 say, at which the surface values become lower than 𝑏0 convection will
occur and the 𝑏0 isopycnal becomes vertical. There is then an isopycnal pathway from the surface
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Fig. 21.32 An idealized interhemispheric moc in a single basin, crudely representing a zonally-
averaged Atlantic circulation. The solid blue lines are the isopycnals, the dashed lines with arrows
are the streamlines, the dashed vertical lines are the boundaries between adjacent regions, shaded
grey areas are the convective regions at high latitudes and the surface mixed layer, and the red curly
arrows represent mixing giving a downward diffusive heat flux.

at 𝑦𝑛 through the interior to the southern channel. A parcel of water may move along this pathway
even in the absence of diffusion; that is, there can be an interhemispheric mid-depth adiabatic
circulation.32 Below this cell (which we associate with nadw) there can be a bottom cell of aabw
that is diffusively driven, as in the previous section.

21.9.2 Dynamics in the Northern Convective Region
In the northern region (denoted with a subscript 𝑁) the values of buoyancy at the surface (i.e.,
𝑏𝑁(𝑦, 𝑧 = 0)) are mapped on to the flat isopycnals, 𝑏𝐵(𝑧) in the interior basin region (denoted with
a subscript 𝐵), and the simplest assumption to make is that the matching occurs by convection.
That is, the surface waters convect downward to the level of neutral buoyancy, producing vertical
isopycnals (𝜕𝑏𝑁/𝜕𝑧 = 0), and then flowmeridionally. By thermal wind the vertical isopycnals give
rise to a zonal flow, with the total zonal transport being determined by themeridional temperature
gradient and the depth, ℎ, to which flow convects. The zonal flow is thus

𝑢𝑁(𝑦, 𝑧) = −
1
𝑓
∫
𝑧

−ℎ

𝜕𝑏𝑁
𝜕𝑦

d𝑧′ + constant, (21.155)

where the constant is determined by the requirement that ∫0−ℎ 𝑢𝑁 d𝑧 = 0, and there are boundary
layers in both east and west to bring the flow to zero. When the relatively shallow eastwardmoving
zonal flow collides with the easternwall it subducts and returns, as sketched in Fig. 21.33, andwhen
the flow reaches the western wall it thenmoves equatorward in the deep western boundary current.
Similarly, it is the upper, northward moving branch of the western boundary current that feeds the
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Fig. 21.33 The envisioned mean flow in
the northern region of the model of
Fig. 21.32. The north–south temperature
gradient induces a zonal ‘thermal wind’,
which is supplied by and feeds the deep
western boundary current, as shown.

eastward moving flow. The total volume transport (m3 s-1) in these thermally-induced zonal flows
thus translates to a meridional streamfunction given by

∫
𝑥𝐸

𝑥𝑊
𝜓𝑁 d𝑥 = ∫

𝑧

−ℎ
d𝑧′ ∫
𝐿𝑛

𝐿
𝑢𝑁 d𝑦, (21.156)

where 𝐿𝑥 is the zonal extent of the region, 𝐿 is the latitude of the southern edge of the convecting
region and 𝐿𝑛 = 𝐿+ 𝑙𝑛 is the northern edge of the domain (see Fig. 21.32). Using (21.155) gives an
estimate for the value of this streamfunction as

𝛹𝑁 =
𝛥𝑏𝐻2
𝐿𝑥𝑓𝑁
, (21.157)

where 𝛥𝑏 is the surface buoyancy difference across the northern convective region, which in the
theory we are describing is an external parameter, and𝑓𝑁 is the Coriolis parameter in the northern
region. The streamfunction 𝜓𝑁 is function of space and𝛹𝑁 is a representative value of it, and𝐻 is
a representative value of ℎ, the depth to which the convection reaches and so of the stratification.

21.9.3 Connection to Other Regions
In the basin region we posit flat isopycnals and an upwelling diffusive balance, whence

𝑤𝐵
𝜕𝑏
𝜕𝑧
= 𝜅𝑣
𝜕2𝑏
𝜕𝑧2

giving 𝛹𝐵
𝐿𝑦
= 𝛹𝑁 − 𝛹𝑆
𝐿𝑦
= 𝜅𝑣
𝐻
. (21.158)

In the channel region the residual circulation arises from a balance between the wind and eddy
effects and is given by (21.135), which we can write as

𝛹𝑆 = (
𝜏0
𝑓𝑆
− 𝐾𝑒
𝐻
𝑙𝑠
) , (21.159)

with 𝑓𝑆 = |𝑓𝑆| as before. Collecting the various expressions above for streamfunction we have

𝛹𝑆 = (
𝜏0
𝑓𝑆
− 𝐾𝑒
𝐻
𝑙𝑠
) , 𝛹𝑁 − 𝛹𝑆 =

𝜅𝑣
𝐻
𝐿𝑦, 𝛹𝑁 =

𝛥𝑏𝐻2
𝑓𝑁𝐿𝑥
, (21.160a,b,c)



856 Chapter 21. The Meridional Overturning Circulation and the acc

with unknowns𝛹𝑆, 𝛹𝑁 and𝐻. Thevarious parameters have approximate values as given in (21.144)
as well as

𝐿𝑥 = 5000km, 𝐿𝑦 = 10000km, 𝛥𝑏 = 10−2ms−2, 𝑓𝑁 = 10−4 s−1. (21.161)

Equation (21.160) may be reduced to

𝛥𝑏𝐻2
𝑓𝑁
− (𝜏0
𝑓𝑆
− 𝐾𝑒
𝐻
𝑙𝑠
)𝐿𝑥 =
𝜅𝑣
𝐻
𝐿𝑥𝐿𝑦 , (21.162)

which is a cubic equation for the characteristic depth, 𝐻, of the upper, nadw, cell in Fig. 21.32.
Although there are analytic solutions to cubic equations it is more instructive to consider limiting
cases, first with either the northern region or the southern channel absent and then with low or
high diffusivity.

No northern source
Suppose that 𝛥𝑏 = 0 and that there is no deep water formation in the north. If 𝜅𝑣 is small then we
obtain𝐻/𝑙𝑠 = (𝜏0/𝑓𝑆)/𝐾𝑒 a, equivalent to (21.146), and 𝛹𝑆 = 𝛹𝐵 = 0. If 𝜅𝑣 is large then we find

𝐻2 = 𝜅𝑣𝐿𝑙𝑠
𝐾𝑒
, (21.163)

so recovering (21.154a). Thus, the dynamics are essentially those of Section 21.8, and there is
a single deep, and rather weak, diffusively-driven, cell. The same situation arises if the northern
region is too buoyant (e.g., toowarm) for then there is no isopycnal pathway betweenhighnorthern
hemispheres and the southern channel, and deep convection does not occur. This case may have
relevance to the Pacific Ocean, where the surface at high northern latitudes is insufficiently dense
and there is no Pacific equivalent of nadw.

No southern channel
If there is no southern channel then 𝛹𝑆 = 0 and we have

𝛥𝑏𝐻2
𝑓𝑁
= 𝜅𝑣
𝐻
𝐿𝑥𝐿𝑦, (21.164)

giving

𝐻3 = 𝜅𝑣 (
𝑓𝑁𝐿𝑥𝐿𝑦
𝛥𝑏
) and 𝛹𝑁 = 𝛹𝐵 = (𝜅𝑣𝐿𝑦)2/3 (

𝛥𝑏
𝐿𝑥𝑓𝑁
)
1/3
. (21.165)

These are the classical expressions for the thickness of a diffusive thermocline and the strength of
a diffusively-driven overturning circulation, essentially as obtained in Sections 21.2.5 and 20.5.1.

Let us now look at the case with all three regions, in the limits of weak and strong diffusivity.

Low diffusivity limit
In this case the upwelling is weak and |𝛹𝑁| ≈ |𝛹𝑆| and

𝛥𝑏𝐻2
𝑓𝑁
− (𝜏0
𝑓𝑆
− 𝐾𝑒
𝐻
𝑙𝑠
)𝐿𝑥 = 0. (21.166)

In this case the basin is just a ‘pass-through’ region: water formed in the North Atlantic just passes
through the basin without change, and upwells in the Southern Ocean. For the above expression
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to be physical, 𝜏0 must be non-zero; this requirement is a manifestation of Sandström’s effect, that
in the absence of diffusivity a mechanical forcing is needed, and if 𝜏0 = 0 in the above then the
only physical solution is𝐻 = 0.

If we assume that𝐾𝑒 is small then we obtain

𝐻 = (𝜏0𝑓𝑁𝐿𝑥
𝑓𝑆𝛥𝑏
)
1/2

, 𝛹𝑆 = 𝛹𝑁 =
𝜏0𝐿𝑥
𝑓𝑆
, (21.167)

which with the parameters chosen earlier gives𝐻 ∼ 320m and𝛹 ∼ 10 Sv. The residual circulation
does not vanish in the limit of small diffusivity; rather, it is wind driven, adiabatic, interhemispheric
and independent of diffusivity. This is to be contrasted with the case in which deep waters are
not produced in the north, as observed in the Pacific Ocean, where in the low diffusivity limit the
eddy-induced circulation nearly cancels the wind-driven circulation resulting in small residual
circulation, dependent on that diffusivity.

In the more general case we solve (21.166) to give

𝐻 = (𝜏0𝑓𝑁𝐿𝑥
𝑓𝑆𝛥𝑏
)
1/2

(−𝛼 + √1 + 𝛼2) , (21.168)

where 𝛼 is a nondimensional number giving the ratio of eddy to wind effects,

𝛼 = 1
2
𝐾𝑒
𝑙𝑠
(
𝐿𝑥𝑓𝑆𝑓𝑁
𝜏0𝛥𝑏
)
1/2

= 1
2
𝛹eddy
𝛹wind
, (21.169)

where

𝛹wind =
𝜏0
𝑓𝑆

and 𝛹eddy =
𝐾𝑒
𝑙𝑠
(𝜏0𝑓𝑁𝐿𝑥
𝑓𝑆𝛥𝑏
)
1/2
. (21.170)

Putting in values from (21.144) and (21.161) gives 𝛼 ∼ 0.1, 𝛹eddy ∼ 1.6 Sv and 𝛹wind ∼ 10 Sv,
suggesting that wind effects are dominant, but there is considerable uncertainty because 𝐾𝑒 is ill-
defined and does not have a definitive value.

High diffusivity limit
In the high diffusivity limit the wind-driven upwelling in the Southern Hemisphere is small com-
pared to the mixing-driven upwelling in the ocean basin, and although it seems to be not relevant
for today’s circulation it may have been important in glacial climates. Equation (21.162) simply
becomes (21.164), which as already noted gives us the classical scaling for a diffusively-driven cir-
culation. The upper cell thus fades out before reaching the southern channel but there remains a
lower, aabw, cell that connects to the flow in the southern channel as described in Section 21.8.

21.9.4 Final Remarks and Relevance to the Ocean
Over the last several pages we’ve described a conceptual, but quantitative, theoretical model of the
overturning circulation in the ocean. Aside from its idealizations (e.g, simplified geometry), the
model has two main shortcomings: it uses an eddy-diffusivity parameterization for the effects of
mesoscale eddies, and it treats the ocean one basin at a time. Putting these aside, what does the
model tell us?

In the limit of weak diapycnal mixing, which seems relevant to the present mid-depth ocean,
and with a northern source of deep water, then the model produces a circulation relevant to the
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Atlantic — Fig. 21.32 is an idealization of the Atlantic panel in Fig. 21.29. The strength of the mid-
depth overturning circulation is then largely determined by the Ekman transport in the South-
ern Ocean and, secondarily, eddy effects. The rest of the ocean is essentially forced to adjust and
produce the amount of deep water demanded by the Ekman transport and the associated wind-
driven upwelling in the Southern Ocean. Beneath this mechanically-forced mid-depth cell lies a
diffusively-driven deep cell, and this is the model representation of aabw.

The Pacific Ocean is insufficiently dense at high northern latitudes to produce deep water —
compared to the Atlantic it is relatively fresh. That is, there is no isopycnal pathway from the
surface waters at high latitudes to the southern channel; and consequently there is no wind-driven
mid-depth cell comparable to that of the Atlantic. The model then produces a circulation similar
to that of Fig. 21.31, where the northern wall is at a high latitudes in the NorthernHemisphere, and
this is an idealization of the Pacific panel in Fig. 21.29. Since the diffusivity is weak the circulation
is weak, particularly in the Northern Hemisphere. The flow in the world’s ocean is much more
interconnected than these simple ideas suggest, and in reality the flow travels from basin-to-basin
on what has been metaphorically called a conveyor belt.33 But our own story ends here, for now.
How the models above might be extended to produce a global flow is a chapter for another day.

Notes
1 Warren (1981) provides a review and historical background and Schmitz (1995) surveys the ob-

servations and provides an interpretation of the deep global circulation. Marshall & Speer (2012)
review the role of the Southern Ocean.

2 The word ‘driven’ is fraught with ambiguity, even when the subject matter is well understood. Does
it refer to the proximate mechanical forces producing the motion, or to the controlling device? The
former (which is quite common in physical science) suggests that an engine drives a car, for that is
what makes the wheels go round, whereas the latter suggests that, in fact, the driver drives the car.
For the less well-understood ocean there is scope for still more confusion, and the context in which
the word is used becomes important. What we in this chapter sometimes call buoyancy-driven
might be better called mixing-driven, since it is the mixing of fluid parcels that makes potential
energy available for the circulation. Caveat lector.

3 Adapted from Wunsch (2002). The figure shows a ‘state estimate’ — a combination of models and
observation, similar to an atmospheric reanalysis.

4 Figure kindly prepared by Neven Stjepan Fučkar, using the climatology of Conkright et al. (2001).

5 As in Haney (1971). The value of 𝐶, which is not necessarily related to that of 𝜅, is often taken to be
such that the heat flux is of order 30Wm−2K−1, but it is certainly not a universal constant.

6 Adapted from Paparella & Young (2002).

7 Rossby (1965).

8 Adapted from Ilicak & Vallis (2012).

9 I am grateful to Tom Haine for pointing out this argument. See also Haine & Marshall (1998) and
Hughes & Griffiths (2008).

10 Ocean convection is also reviewed by Marshall & Schott (1999).

11 Sandström (1908, 1916). Sandström’s discussion was rather qualitative and generally thermody-
namic in nature, with friction playing only an implicit role. Since then a number of related state-
ments with varying degrees of generality and preciseness have been given (e.g., Dutton 1986, Huang
1999, Paparella & Young 2002). Section 21.2.3 follows Paparella and Young.

12 Theoriginal boxmodel is due to Stommel (1961), andmany studieswith variations around this have
followed. Rooth (1982) developed the idea of a buoyancy-driven pole-to-pole overturning circu-
lation, and Welander (1986) discussed, among other things, the role of boundary conditions on
temperature and salinity at the ocean surface. Thual & McWilliams (1992) systematically explored
how boxmodels comparewith two-dimensional fluidmodels of sideways convection, Quon &Ghil
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(1992) explored how multiple equilibria arise in related fluid models, and Dewar & Huang (1995)
discussed the problem of flow in loops. Cessi & Young (1992) tried to derive simple models sys-
tematically from the equations of motion, obtaining various nonlinear amplitude equations. Our
discussion is just a fraction of all this — see also Whitehead (1995) and Cessi (2001) for reviews.

13 Adapted from Welander (1986).

14 Having said this, Bryan (1986), Manabe & Stouffer (1988) and Marotzke (1989) did find evidence
of multiple equilibria in various three-dimensional numerical models, motivated in part by the
solutions of box models.

15 After Stommel et al. (1958).

16 Following Stommel & Arons (1960).

17 A global Stommel–Arons-like solution was presented by Stommel (1958). The discovery of deep
western boundary currents by Swallow & Worthington (1961) was motivated by the theoretical
model. Using neutrally-buoyant floats underneath the Gulf Stream they found an equatorward-
flowing undercurrent with typical speeds of 10–20 cm s−1. Some relevant observations of the deep
circulation are summarized by Hogg (2001).

18 For example, Toggweiler & Samuels (1995).

19 Drawing from the various numerical, conceptual and analytic models of Toggweiler & Samuels
(1995, 1998), Döös&Coward (1997), Gnanadesikan (1999), Vallis (2000),Webb&Suginohara (2001),
Nof (2003), Samelson (2004), Wolfe & Cessi (2011), and Nikurashin & Vallis (2011, 2012). The no-
tion of a deep interhemispheric circulation driven by winds in the acc was earlier proposed by Eady
(1957), albeit rather sketchily. None of our models of the moc (including the ones in later sections)
are complete, never mind true, but some may be useful.

20 Loic Jullion graciously provided the inverse calculations, which are similar to those described in
Lumpkin & Speer (2007). Patrick Heimback kindly provided the state estimates, which are from
the ecco suite of calculations.

21 From Rintoul et al. (2001).

22 See Rintoul et al. (2001) and Olbers et al. (2004) for acc reviews.

23 These simulations, described in Henning & Vallis (2005), solve the primitive equations in a domain
similar to Fig. 21.19. The wind forcing produces a poleward Ekman drift across the channel, as well
as a subtropical gyre, and there is a meridional temperature gradient across the whole domain, so
giving rise to a subtropical thermocline.

24 Adapted from Henning & Vallis (2005).

25 Munk & Palmén (1951), Gille (1997) and Stevens & Ivchenko (1997).

26 Adapted from a figure in Burke et al. (2015).

27 Models of this ilk stem from Johnson & Bryden (1989). Straub (1993), Hallberg & Gnanadesikan
(2001) Karsten et al. (2002), Marshall & Radko (2003), Henning & Vallis (2005), consider related
issues and extensions.

28 See also Munk & Palmén (1951), Warren et al. (1996), Olbers (1998) and Hughes (2002).

29 Similar to a figure in Watson et al. (2015).

30 Largely following Nikurashin & Vallis (2011, 2012). For related numerical simulations see Vallis
(2000) and Wolfe & Cessi (2010, 2011).

31 A full description may be found in Nikurashin & Vallis (2012). In the form described here the model
becomes similar to the one of Gnanadesikan (1999).

32 A continuous, unique, pole-to-pole isoneutral pathway is a chimera, because of the nonlinear de-
pendence of density on pressure, temperature and salinity in the seawater equation of state. But
at the level of our theory there is an approximate one. See also endnote 9 on page 53.

33 For variations involving multiple basins see Ferrari et al. (2014) and Thompson et al. (2016).
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¿e¿ermocline and the
Meridional Overturning
Circulation

I
    we developed an understanding of the ver-
tically integrated flow of the worlds oceans. In this chapter we look
at the vertical structure of the oceans and the meridional overturning

circulation (MOC), which is the circulation in the vertical–meridional plane.

. T O

In this chapter are we essentially trying to explain two things:
(i) The structure of the temperature and density of the ocean in the

vertical-meridional plane;
(ii) The circulation of the ocean in that same plane.

As one might expect it is much harder to observe the interior of the ocean
than the surface ocean, or the atmosphere. Because water is almost opaque
to electromagnetic radiation we actually have to drop instruments into
the ocean to measure its deep properties. These days measurements come
from a combination of moored instruments, hydrographic surveys, floats,
gliders, and satellites that measure surface properties. The various mea-
surements are combined in some fashion (often in combination with a
numerical model) to give a ‘state estimate’ of the ocean, and we now have
a decent coarse-grained view of the density structure and circulation of
the sub-surface ocean, although with far less detail than our view of the
atmosphere.

.. ¿e¿ermocline

The density structure of the Atlantic Ocean (and the Pacific is similar) is
illustrated in Fig. 15.1. Here we see that the main gradients of density are
concentrated in the upper 1 km or so of the ocean, in themain thermocline,
which serves to connect the relative warm surface waters with the much
colder abyssal waters, and it exists year round. (The seasonal thermocline,
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density in the Atlantic ocean.

On the left is the clima-
tological zonally-averaged

field, plotted with a break in
the vertical scale at m.
On the right is a section at
53°W. Both plots show region

of rapid change of density
(and temperature)

concentrated in the upper
kilometre, in themain

thermocline, below which the
density is much more uniform.

which is not visible in these plots, is a much shallower region near the
surface over which the temperature gradient varies seasonally.) The ther-
mocline is much weaker at high latitudes, since the near surface waters
are already cold, and it is shallower at low latitudes, as we see in Fig. 15.2.
The abyssal temperature all latitudes is about 2°C, which is similar to the
surface temperature at high latitudes, and this is consistent with water at
high latitudes sinking, spreading equatorward and filling the abyss.

.. ¿eMeridional Overturning Circulation

Closely associated with the density structure of the ocean is the MOC,
and this is illustrated in Fig. 15.3. Focussing on the red, northern cell we
see water sinking at high latitudes, spreading south at depth, upwelling
largely in the SouthernOcean. Thewater in this cell is calledNorth Atlantic
Deep Water, or NADW. The blue cell shows water sinking at high southern
latitudes and spreading north underneath the NADW before rising to mid-
depth and returning. The Pacific Ocean, which we come to later, has
a much weaker overturning circulation to the extent that the globally-
averaged overturning circulation largely reflects that of the Atlantic. The
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overturning circulation and the thermocline are, as one might expect,
intimately linked and to explain one we must explain the other. Let us
begin with a phenomenological discussion of the overturning circulation.

. AM-D O C

To begin with the simplest case let us consider the circulation in a closed,
single hemispheric basin, and suppose that there is a net surface heating at
low latitudes and a net cooling at high latitudes thatmaintains ameridional
temperature gradient at the surface. It seems reasonable to imagine that
there is a single overturning cell, with water sinking at high latitudes rising
at low latitudes before returning to polar regions in the upper ocean, as
illustrated schematically in Fig. 15.4 and in Fig. 15.5. Is this a reasonable
expectation? Can we explain why the water circulate at all?

.. Why the water circulates

Let us suppose that initially all the interior water is at some intermediate
temperature, and we will also suppose that the flow in the interior is
adiabatic, meaning that to a good approximation the subsurface water
conserves its potential temperature as itmoves around. Now, given awarm
interior cold surface water at high latitudes will be convectively unstable
and will therefore sink, so that very quickly the dense water extends all
the way to the ocean floor. By hydrostasy the pressure in the deep ocean is
then higher at high latitudes than at low, where the water is warmer, and
pressure gradient will causes water to move equatorward filling the abyss.
Eventually, the entire ocean is filled with cold dense water of polar origin,
except for a very thin layer at the surface, since the ocean surface at lower
latitudes is kept at a higher temperature. Once the abyss is filled with
dense water the surface polar waters will no longer be convectively unstable.
The convection will thus cease and the circulation will halt! However, we
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know from observations that the deep ocean continues to circulate, albeit
slowly, with the deep ocean completely overturning and the water being
replaced on timescales of a few hundred years. There are two causes of the
continued circulation, one being that the ocean mixes and the other being
that the wind forcing at the top drives a deep circulation; we consider
the effects of mixing first and come back to the wind-driving later in the
chapter.

Mixing — either molecular mixing or, in reality turbulent mixing, as
discussed in Chapter 10 — will cause the higher surface temperatures in
lower latitudes to diffuse down into the ocean interior. That is, the interior
is slowly warmed by heat diffusion down from above. This diffusion keeps
the deep ocean slightlywarmer than the cold polar surfacewaters, enabling
the high-latitude convection and so the circulation itself to persist. The
diffusion also extends the vertical temperature gradient down into the
interior and we see in Fig. 15.2 how the vertical temperature profile varies
with latitude. Except at the highest latitudes where the water is sinking
and so almost uniform all the way to the bottom, we that the temperature
gradient is concentrated in the upper kilometre of the ocean, and this
region is called themain thermocline. Why should the temperature gradient
be concentrated in the upper ocean? The upper ocean is also the region
of the gyres, and dynamics of that region are rather complicated, but the
underlying reason that the vertical temperature gradient is strongest there
is more basic, as we now explore with a kinematic model.

.. A Simple Kinematic Model of the¿ermocline

In mid- and low latitudes cold water with polar origins upwells into a
region of warmer water where high temperatures are diffusing down, and
a simple model of this is the one-dimensional advective–diffusive balance,
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Fig. .: Cartoon of a
single-celled meridional
overturning circulation, with a
wall at the equator. Sinking is
concentrated at high latitudes
and upwelling spread out over
lower latitudes. ¿e
thermocline is the boundary
between the cold abyssal
waters, with polar origins, and
the warmer near-surface
subtropical water. Wind
forcing in the subtropics
pushes the warm surface
water into the fluid interior,
deepening the thermocline as
well as circulating as a gyre.

namely

wàTàz = ê
à2T
àz2 , (15.1)

where w is the )vertical velocity (which is positive), ê is a diffusivity and T
is temperature. The equation represents a balance between the upwelling
of cold water and the downward diffusion of heat. If w and ê are given
constants, and if T is specified at the top (T = TT at z = 0) and if T = TB at
great depth (z = −∞) then the temperature falls exponentially away from
the surface according to

T = (TT − TB)ewz/ê + TB, (15.2)

The scale at which temperature decays away from its surface value is given
by

ä = êw, (15.3)

and this is an estimate of the thermocline thickness. It is not a useful a
priori estimate, because the magnitude of w depends on ê. However, it
is reasonable to see if the observed ocean is broadly consistent with this
expression. The diffusivity ê can be measured; it is an eddy diffusivity,
maintained by small-scale turbulence, and measurements produce values
that range between 10−5m2 s−1 and 10−4m2 s−1 over much of the ocean,
with higher values locally in some abyssal and shelf regions.

The vertical velocity is too small to be measured directly, but vari-
ous estimates based on deep water production suggest a value of about
10−7ms−1. Using this and the smaller value of ê in (15.2) gives an e-folding
vertical scale, ê/w, of order a hundred metres, beneath which the stratifi-
cation is predicted to be very small (i.e., nearly uniform potential density).
Using the larger value of ê increases the vertical scale to 1000m, similar to
the observed value. Quantitative uncertainties aside, the model has a very
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robust result, that the temperature gradient is concentrated in the upper ocean.
The reason for the up-down asymmetry is that cold water is upwelling
and only needs to warm up as it approaches the warm upper surface. If
êwere very small there would just be a thin boundary layer at the top of
the ocean, and the overturning circulation would be very weak because
almost the entire ocean would be as cold as the cold polar surface waters.

¿e effect of wind

In the above description we considered an ocean without wind, yet we
spent the entire previous chapter demonstrating that the wind produces
gyres. How do wind effects fit into our picture of the MOC? In the sub-
tropics the wind-stress curl forces water to converge in the subtropical
Ekman layer, thereby forcing relatively warmwater to downwell and meet
the upwelling colder abyssal water at some finite depth. The result of
this is that the thermocline is no longer necessarily solely a near-surface
phenomenon; rather, the transition from cold abyssal waters to warm
subtropical waters can occur some depth below the surface in an ‘internal
thermocline’. Between the internal thermocline and the surface waters the
gyres circulate, and in general this region will also have a vertical gradient
of temperature, and this region is called the ‘ventilated thermocline’ —
ventilated because the waters feel the effects of, or are ventilated by, the
surface. In so far as we can separate the two effects of wind and diffusion,
we can say that the strength of the wind influences the depth at which the
thermocline occurs, whereas the strength of the diffusivity influences the
thickness of the thermocline. However, in practice the regions often merge
smoothly together.

. D   M-D MOC 

T

Going beyond the kinematic model let us now consider the dynamics that
produce an overturning circulation and a thermocline, and try to produce
estimates of how fast the water circulates, how deep the thermoclinemight
be, and what parameters these quantities depend upon. The Rossby num-
ber of the large-scale circulation is small and the scale of the motion large
so the flow obeys the planetary-geostrophic equations. In our standard
notation these equations are

f × u = −∇õ, àõ
àz = b, (15.4a,b)

∇ ⋅ v = 0, Db
Dt = êà

2b
àz2 . (15.4c,d)

These equations are, respectively, the horizontal and vertical momentum
equations (hydrosatic and geostrophic balance), the mass continuity equa-
tion and the buoyancy equation. Let us suppose that these equations hold
below an Ekman layer, so that the effects of a wind stress may be included
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by specifying a vertical velocity, wE, at the top of the domain. The diapy-
cnal diffusivity, ê, is an eddy diffusivity, but since its precise form and
magnitude are uncertain we proceed with due caution, and a useful practi-
cal philosophy is to try to ignore dissipation and viscosity where possible,
and to invoke them only if there is no other way out. Let us therefore scale
the equations in two ways, with and without diffusion; these scalings will
be central to our theory.

.. A Diffusive Scale

Suppose that the circulation is steady and resembles that of Fig. 15.5, but
with no wind forcing. Can we estimate how deep the diffusive layer will be
in the subtropical gyre? We will suppose that, as in the kinematic model,
the thermodynamic equation reduces to the advective-diffusive balance
of (15.1), but we will use the other equations in (15.4) to give an estimate
of the vertical velocity. If we take the curl of (i.e., cross differentiate) the
momentum equation (15.4a) and use mass continuity we obtain the linear
vorticity equation, âv = fàw/àz, and if we take the vertical derivative
of the momentum equation and use hydrostasy we obtain thermal wind,àu/àz = k × ∇b. Collecting these equations together we have
wàbàz = êà

2bàz2 , âv = fàwàz , fàuàz = k × ∇b, (15.5a,b,c)

with corresponding scales

W
ä = êä2 , âV = fWä , U

ä = ÄbfL, (15.6a,b,c)

where ä is the vertical scale and other scaling values are denoted with
capital letters. We suppose that V ∼ U, where U is the zonal velocity scale,
and henceforth we will denote both by U (a hypothesis we come back to
later) and we take L to be the horizontal scale of the motion, which we
take as the gyre or basin scale. Typical values for the subtropical gyre
are Äb = gÄñ/ñ0 = gâTÄT ∼ 10−2ms−2, L = 5000 km, f = 10−4 s−1 and
ê = 10−5m2 s−2.

Equation (15.6a) is the same as (15.3), as expected, but we can now use
(15.6b,c) to obtain an estimate for the vertical velocity, namely

W = âä2Äbf2L . (15.7)

Using this and (15.6a) gives the diffusive vertical scale, and the estimates

ä = (êf2LâÄb)
1/3

, W = (ê2âÄbf2L )
1/3

. (15.8a,b)

With values of the parameters as above, (15.8) gives ä ≈ 150m andW ≈
10−7ms−1.
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.. An Advective Scale

The value of the vertical velocity obtained above is very small, much smaller
than the Ekman pumping velocity at the top of the ocean, which is of
order 10−6 to 10−5ms−1. This difference suggests that we might ignore
the diffusive term in (15.5a) — indeed, ignore the thermodynamic term
completely — and construct an adiabatic scaling estimate for the depth of
the wind’s influence. Further, in subtropical gyres the Ekman pumping
is downward, whereas the diffusive velocity is upward, meaning that at
some level,Da, we expect the vertical velocity to be zero.

The equations of motion are just the thermal wind balance and the
linear geostrophic vorticity equation, namely

âv = fàwàz , f × àuàz = −∇b, (15.9)

with corresponding scales

âU = fWDa ,
U
Da
= 1f ÄbL , (15.10)

recalling that V ∼ U.
The thermodynamic equation does not enter, but we take the vertical

velocity to be that due to Ekman pumping,WE. From (15.10) we immedi-
ately obtain

Da =W1/2E ( f2LâÄb)
1/2

, (15.11)

which may be compared with the estimate of (??). If we relate U andWE
using mass conservation, U/L =WE/Da, instead of using (15.9a), then we
write L in place of f/â and (15.11) becomesDa = (WEfL2/Äb)1/2, which
is not qualitatively different from (15.11) for large scales.

The important aspect of the above estimate is that the depth of the
wind-influenced region increases with the magnitude of the wind stress
(becauseWE ∝ curlzó) and decreases with the meridional temperature
gradient. The former dependence is reasonably intuitive, and the latter
arises because as the temperature gradient increases the associated thermal
wind-shearU/Da correspondingly increases. But the horizontal transport
(the product UDa) is fixed by mass conservation; the only way that these
two can remain consistent is for the vertical scale to decrease. Taking
WE = 10−6ms−1, and other values as before, givesDa = 500m, andWE =
10−5ms−1 givesDa = 500m. Such a scaling argument cannot be expected
to give more than an estimate of the depth of the wind-influenced region;
nevertheless, becauseDa is much less than the ocean depth, the estimate
does suggest that the wind-driven circulation is predominantly an upper-
ocean phenomenon.

¿e Physical Picture

What do the vertical scales derived above represent? The wind-influenced
scaling, Da, is the depth to which the directly wind-driven circulation
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Fig. .: A simple model of
the abyssal circulation.
Convection at high latitudes
provides a localized
mass-source to the lower layer,
and upwelling through the
thermocline provides a more
uniform mass sink.

¿e model of the deep cell
described in this section is
known as the Stommel–Arons
model after its inventors, Henry
Stommel and Hank Arons, who
put forward the model in .

can be expected to penetrate. Thus, over this depth we can expect to see
wind-driven gyres and associated phenomena. At greater depths lies the
abyssal circulation, and this is not wind-driven in the same sense. Now, in
general, the water at the base of the wind-driven layer will not have the
same thermodynamic properties as the upwelling abyssal water — this
being cold and dense, whereas the water in the wind-driven layer is warm
and subtropical (look again at Fig. 15.5). The thickness ä characterizes
the diffusive transition region between these two water masses and in
the limit of very small diffusivity this becomes a front. In the diffusive
region, no matter how small the diffusivity ê is in the thermodynamic
equation, the diffusive term is important. In contrast, Da is the depth of
the thermocline and this depends on the strength of the wind and not ê.
Of course if the diffusion is sufficiently large, the thickness will be as large
or larger than the depth, and the two regions will blur into each other, and
this may indeed be the case in the real ocean.

.. A view from above

In the description above we looked at the circulation in the y–z plane —
an ‘elevation’ in architectural terms. Let us look at the circulation in thex–y plane, namely a plan view, as we did with the wind-driven circulation.

We will imagine a model ocean consisting of two layers of shallow
fluid, each obeying the planetary-geostrophic equations of motion. The
interface and upper layer represent the thermocline (which to keepmatters
simple we suppose is motionless), and the lower layer is the abyss. The
convection is represented by a localised mass source at high latitudes in
the lower layer, and the diffusive upwelling is represented by a transfer of
mass from the lower layer to the upper layer, as sketched in Fig. 15.6.

In this simple model we suppose that the lower layer satisfies the mass
conservation equation and geostrophic balance in the form

Dℎ
Dt + ℎ∇ ⋅ u = S, −fv = −g� àℎàx , fu = −g� àℎày , (15.12a,b,c)
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Following the theoretical
prediction, a southward

flowing deep western boundary
current underneath the Gulf

Stream was in fact observed by
Swallow & Worthington ()
by tracking neutrally buoyant

floats.

where ℎ is the thickness of the lower layer, g� is the reduced gravity and S
is a mass source or sink. With a little manipulation we combine these equa-
tions into the planetary geostrophic potential vorticity equation, namely

D

Dt (fℎ ) = −fSℎ2 . (15.13)

In a steady state this equation simplifies to

vℎ àfày = −fSℎ2 . (15.14)

(The reader may recognise this as a form of the vorticity equation, âv =fàw/àz.)
Now, and considering a situation confined to the Northern Hemi-

sphere, we are supposing that there is an effective point source of mass at
high latitudes and a uniform mass sink everywhere else. This means thatS is negative nearly everywhere and v is positive — that is, flow is toward
the mass source in the lower layer! This result seems counter intuitive and
at odds with our earlier discussion, in which the flow was away from the
source at lower levels, with a shallow return flow. Even more fundamen-
tally, overall mass balance in the lower layer is not satisfied, since there
must be a net flow away from the convective source.

The reconciliation of these views comes about through an intense
western boundary current, similar to the current that closes the circulation
in the wind-driven models of the previous chapter, as sketched in Fig. ??.
In the western boundary current frictional effects are important, allowing
the circulation to close. Thus, the model predicts that there should be
a deep western boundary current flowing away from the source (and
so southwards in the Northern Hemisphere), and a generally polewards
return flow in the interior, and these are features of the real ocean. A short
calculation is revealing about the nature of the flow.

A short calculation

We can calculate the strength of the western boundary current as follows.
We pose the problem in a Cartesian domain of extent Lx × Ly and a wall
at the equator, y = 0. At some latitude y, mass balance in the lower layer
must satisfy C0 + TI(y) = TW(y) + U(y), (15.15)

as seen in ]figrffsaf5b. Here, C0 is the strength of the convective source,
which we take as given, TI(y) is the polewards flow in the interior, in the
lower layer, across the latitude line at y, TW(y) is the equatorial flow in
the deep western boundary current at y, and U(y) is the total upwelling
polewards of y. The terms on the left-hand side are mass sources to this
region and the terms on the right-hand side are losses, all in units of
m3 s−1 (since density is constant mass balance and volume balance are
synonymous). Over the entirety of the domain the source term must
balance the upwelling, so that C0 = U(0), and we assume the upwelling is
uniform.
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Fig. .: Schematic of the
abyssal flow in a
Stommel–Arons model of
single sector. Poleward of a
latitude y the mass gains in
the abyss due to the
convective source, C0, and the
interior return flow, TI, must
be balanced by the loss in the
western boundary current, TW
and the upwelling, U. ¿e
transport in the western
boundary current TW is larger
than that of the convective
source because some of the
flow recirculaties. ¿e western
boundary current also
decreases in intensity
equatorward, as it loses mass
to the polewards interior flow.

The poleward transport in the interior is given using (15.14),

TI(y) = ∫ vℎ dx = ∫ fSâ dx. (15.16)

Now, since the upwelling S is uniform, and ∫ S dx dy = SLxLy = U(0) =C0, we have
TI(y) = fC0âLy =

C0yLy . (15.17)

using f = ây. It is important to realise that this result is obtained using
the potential vorticity equation and not the mass continuity equation.

The upwelling north or latitude y is given by
U(y) = SLx(Ly − y) = C0(1 − yLy ) (15.18)

Using (15.17) and (15.19) in (15.15) gives

TW(y) = 2C0yLy (15.19)

This is a remarkable result, for it tells us that the strength of thewestern
boundary current near the source region is twice the strength of the source
itself! The result arises because some of the flow in the deep layer is
recirculating, going round and round without upwelling or coming from
the source itself. The calculation itself is very approximate, but the fact that
there is a deep western boundary current, and that the flow recirculates,
transcend its limitations and are robust features.

As a final point is that we have taken the convective source to have
a given magnitude. In reality, the strength of the source must match the
strength of the upwelling, this being the strength of the overturning circula-
tion itself. This is a function of the diapycnal diffusivity and themeridional
temperature gradient, as described in Sections 15.2 and 15.3.
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Fig. .: Schematic of an
idealized interhemispheric

overturning circulation. Water
from the north sinks, because
it is the densest water in the

system. It displaces any lighter
water and filling up the entire
basin (i.e., both hemispheres)
except for a thermocline near
the surface. A circulation is

maintained if heat diffuses in
from the surface, warming the
deep water and enabling it to

rise. ¿e strength of the
circulation depends on the

diffusivity, and if it is zero the
circulation eventually halts.
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As attractive as it may be, the theory of the overturning circulation and
thermocline describe in the preceding sections is only part of the picture.
In fact, much of the deep circulation is interhemispheric, although this only
became truly apparent at the beginning of 21st century. If we look back
We can see in Fig. 15.3 that much of the water that sinks in the North
Atlantic upwells around 40°S, in the Southern Ocean. In the rest of the
chapter we try to understand why that should be.

.. A Basic Mechanism

An interhemispheric circulation of itself is of no particular surprise. For
simplicity consider a ‘shoebox’ ocean consisting of a single basin stretching
from high northern latitudes to high southern latitudes, and let us suppose
that the surface at high latitudes in one hemisphere, say the North. The
physical situation then actually differs little from the situation described
in Section 15.2. The densest water in the system will sink, and spread
equatorward. However, there is no reason that it should upwell before it
reaches the equator. Rather, the densest water in the system will displace
any lighter water and fill up both hemispheres of the basin, except for a
thermocline near the surface. The flow away from the convective region
occurs, as in the single-hemisphere model, in deep western boundary
currents, with upwelling and return flow in the basin interior.

A circulation, as with the mixing-driven circulation described in Sec-
tions 15.2 and 15.3, is dependent on there being a non-zero diffusivity to
warm the deep water and allow them to rise. if the diffusivity were zero,
then the entire basin would simply fill with the densest available water
(with the exception of an infinitesimally thin layer at the surface) and the
circulation would then halt.
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Fig. .: Composite satellite
image (courtesy of NASA) of
Antarctica and the Southern
Ocean, also showing South
America (at ten o’clock),
South Africa (one o’clock) and
Australia (four o’clock). Unlike
the Northern Hemisphere
basins, the Southern Ocean
has no unbroken meridional
boundaries and, like the
atmosphere, constitutes a
zonally–re-entrant channel.

.. AWind-Driven Interhemispheric Ciculation

The mixing-driven circulation described above is not the only mechanism,
and is not in fact the main mechanism, whereby deep water actually cir-
culates. Rather, a significant fraction of the oceanicMOC is wind-driven,
stemming in large part from the particular geography of the Southern
Ocean, as we see if Fig. 15.9. The oceanic relevance of this striking image
is simply the following. The Southern ocean has no unbroken meridional
boundaries, and at higher latitudes, between the tip of South America and
Antarctica, the ocean forms a zonally–re-entrant channel over which the
wind predominantly (and rather strongly) blows eastward — the famous
’roaring forties’ and the even stronger ‘furious fifties’.

The eastward winds generate a northwards flowing Ekman drift in the
channel. The strength of the Ekman flow is given using x-component of
the frictional-geostrophic balance,

− fv = −1ñ àpàx + àóàz , (15.20)

where as before ó is the kinematic stress, namely the actual stress divided
by the seawater density. If we integrate this equation around a channel
the pressure term vanishes, and if we integrate down in the ocean to a
level where the stress effectively vanishes we obtain an estimate for the
transport induced by the wind, namely

Vw = ó0Lf , (15.21)

where Vw is the volumetric transport (in m3 s−1) due to the surface wind
stress, ó0, and L is the zonal extent over which wind-stress occurs. The
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Fig. .: Schematic of an
idealized wind- and
mixing-driven inter-

hemispheric overturning
circulation, with a source of

cold dense water in the north
and a southern channel,
marked by the dashed

rectangle. ¿e water circulates
as shown by the solid arrows,

even with no diapyncal
diffusivity. If diapycnal

diffusivity is non-zero then
some water upwells, as in the
dashed arrows, enhancing the

overturning circulation.

wind stress over the Southern Ocean is quite high, about 0.2 Pa (for the
actual stress), and if we suppose that L corresponds to the width of the
Atlantic, about 5000 km, we obtain a transport of about 20 Sv, or 2 ×107m3 s−1 (which should be regarded as a very rough estimate).

What makes this calculation of particular interest to theMOC is that,
because of the channel nature of the Southern Ocean, the northwards
flowing Ekman transport cannot be returned at the surface. In an enclosed
ocean basin the western boundary current can provide any return flow
needed to balance the Ekman transport, but this cannot occur in a channel.
Thus, the flow must occur at depth, implying an overturning circulation.

Although it is rough, the estimate is of the same order of magnitude as
that which arises from a diffusive calculation. Using (??b), and setting â ∼f/L, we obtain an estimate for the diffusive component of the volumetric
overturning circulation of

Vd = (ê2ÄbL4f )
1/3 . (15.22)

Putting in values for the various parameters gives an estimate of between1 × 106 to 2 × 107, depending on the values chosen for ê and Äb. The ratio
of the two estimates above is given by

R = (ê2ÄbLf2ó30 )
1/3 . (15.23)

The ratio has large error bars and the reader is invited to substitute repre-
sentative values. However,R is neither obviously very large nor very small,
implying that wind-driving over the Southern Ocean can play a major role
in driving a global overturning circulation in the ocean. The question as
to whether the wind-driven or diffusive component are dominant in the
real ocean is a question for observations and for comprehensive numerical
models of the ocean, and the reader may refer to the references are given
at the end of the chapter.
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Fig. .: A sketch of the
overturning circulation of the
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interhemispheric cell of NADW
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.. Dynamics of the Interhemispheric Circulation

Let us now explore the dynamics of theMOC a little more and consider the
case with a source of cold dense water in the north and a southern channel,
as illustrated in Fig. 15.10, in which we phenomenologically combine our
pictures of the channel and the overturning circulation. Consider the
case when the diapycnal diffusivity is zero. Cold dense water in the north
sinks and fills up the basin, but unlike the case with no wind pumping
the circulation does not eventually cease when the basin is full of the
densest water, because of the pumping effect of the winds over the channel.
These continually pump water in the channel northwards, but on leaving
the channel the water does not sink because it is lighter than the water
beneath it, which has come from the cold north. Rather, these waters will
continue a northward journey until they reach high northern latitudes,
and which time they are cold and dense and hence they sink, and begin
their overturning journey anew.

Antarctic Bottom Water

The picture is still not complete, because at the southern end of the channel
the surface waters are actually colder and denser they are at high northern
latitudes. These waters will therefore sink and, we might imagine, fill
up the entire basin, and if so there would then be no need for an inter-
hemispheric MOC. However, this reasoning is not correct, because the
southward flow at the base of the channel must exactly balance the north-
ward flow at the surface, this requires that some flow from high northern
latitudes must be drawn down to the Southern channel. The net result of
this is that the circulation forms two cells, as schematically illustrated in
Fig. 15.11. The lower cell of Antarctic BottomWater (AABW) depends for
its circulation on the presence of mixing, since it is not pumped by the
winds, whereas the upper North Atlantic DeepWater (NADW) cell is driven
both by mixing and Southern Ocean winds. In the absence of any mixing
the very deep ocean would fill with AABW and then become stagnant, with
the upper cell continuing to circulate.
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Thus far, we have not paid much attention to the dynamics of the
Southern Ocean itself, and how it manages to satisfy the momentum
balance and whether such things as baroclinic eddies might form within
it. Let us now address that.

.♦ D   S O

Let us now consider a rather idealizedmodel of the Antarctic Circumpolar
Current, or ACC. Specifically, we will imagine a zonally–re-entrant, flat-
bottomed channel of fresh water in the Southern Hemisphere. We suppose
the water in the channel is forced by a constant eastward wind at its
surface and that the air temperature decreases polewards, and that the
surface waters in the channel takes on the temperature of the overlying
atmosphere and so also decrease polewards. We also suppose that the
channel is isolated from the rest of the ocean; that is, it has walls at its
southern and northern edges. We suppose that the flow in the channel
is in a frictional-geostrophic balance, with the (real) stress terms being
important only near the surface (because of the wind forcing) and at the
bottom (because of bottom friction), with eddy stresses possible in the
interior.

As a direct result of the way we have set up the model, there can be
no zonally-averaged meridional geostrophic flow in the channel interior.
This follows directly from geostrophic balance, fv = àõ/àx, and the
zonal average of v, namely v, vanishes. Further, the vertically integrated
meridional flow must also vanish on average, by mas conservation. A
corollary of this result is that Sverdrup balance is not a good foundation
on which to build. To see this, suppose that the wind is zonally uniform
and the flow is statistically homogeneous in the zonal direction. Sverdrup
balance would mean that â[v] = −fàó/ày, where ó is the zonal wind
stress and ⟨v⟩ is the vertically integrated meridional velocity. But the
zonal average of ⟨v⟩must vanish, so that the local satisfaction of Sverdrup
balance can hold only in the presence of zonal inhomogeneities, such as
continental boundaries or possibly topography. Evidently, the dynamics
of the ACC are likely to be different from those of gyres, and may be more
like the atmosphere.

.. Momentum Balance

We noted previously that the eastward wind produces a northward Ekman
drift at the surface, and as thiswatermoves north itwarms. When it reaches
the equatorward edge of the channel it sinks and returns, even though it is
warm, in order that mass conservation can be satisfied. This circulation is
achieved by a pressure gradient, and the flow returns along the bottom
where friction acts. The frictional-geostrophic zonal momentum equation
is, in steady state and no eddy terms,

− fv = àõàx + àóàz − àu
�v�ày (15.24)
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Fig. .: Idealized
stratification and overturning
circulation in a Southern
Hemisphere circumpolar
channel, forced by eastward
winds and with a surface
temperature that increases
northwards. ¿e dashed
vertical line is a wall in a true
channel, and an open
boundary in the real ACC.

¿e left panel shows a channel
with no baroclinic eddies and
hence vertical isopycnals. ¿e
right panel shows the
circulation when baroclinic
eddies form, causing the
isopycnals to slump, with an
Eulerian circulation (dark
blue), a bolus circulation (red),
and a net, or residual,
circulation (black arrows). ¿e
clockwise Eulerian circulation
is forced by the eastward
winds, the bolus circulation
opposes it, and the residual
circulation is nearly along
isopycnals, either recirculating
or entering at the northern
edge.

Integrating zonally (denoted with an overbar) gives fv = àó/àz, and
integrating vertically (denoted with angle brackets) gives

− f⟨v⟩ = ó(0) − ó(−H). (15.25)

where z = 0 and z = −H at the top and bottom of the channel. Since⟨v⟩ = 0 by mass conservation, we see that the wind stress at the top of
the ocean must be balanced, at each latitude, by a drag at the bottom. We
therefore expect a weak but non-zero eastward zonal flow at the bottom
to provide that stress, and the communication between top and bottom is
provided by the overturning circulation, as illustrated in Fig. 15.12.

Now, once a water parcel leaves the surface it will, except for the rather
weak effects of diffusion, keep the potential temperature it had at the
surface. Thus, the returning water at the channel bottom has the same
potential temperature as that of the warmest part of the channel at the
surface, and so as it moves south it will be lighter than the surface water
above it, and thus convectively unstable. The column thus convects, pro-
ducing vertical isopycnals stretching from the bottom to the surface, and
sowith ameridional temperature gradient at all levels and a corresponding
thermal wind shear. The absolute value of the eastward flow in such a
situation is set by the requirement that the bottom stress exactly balances
the wind stress at the surface. However, such a flow has a large amount of
available potential energy and will be baroclinically unstable and provide
eddy momentum and buoyancy fluxes, as we now consider.

.. Eddy Fluxes and the Residual Circulation

Amain effect of baroclinic instability is to release available potential energy
(APE), and the result of this is that the isopycnals slump, pushing cold dense
water to the abyss and raising the lighter water and so reducing the overall
potential energy of the fluid, as illustrated schematically in Fig. 15.12. The
slope of the isopycnals is then determined by a balance between the wind
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¿e Southern Ocean is one of
the most eddy-active areas of

the world’s ocean. One
consequence of these eddies is

the production of an
eddy-induced, or bolus,
circulation that in part
balances the Eulerian,

wind-driven, circulation.

forcing (the steepening effect) and baroclinic instability (the slumping
effect). A quantitative theory is beyond the scope of this book, but we can
go a little way along the path understanding using the TEM framework
introduced in Chapter 9.

Including the eddy momentum and buoyancy fluxes, we write the
equations of motion for the zonally-averaged flow, as

àuàt − fv = àóàz − àu
�v�ày , àb

àt +N2w = −àb
�v�
ày +H , (15.26a,b)

àv
ày + àwàz = 0, fàuàz = −àbày (15.26c,d)

The first two equations above are the zonally-averaged zonal momentum
equation and buoyancy equation (whereH represents heating), and the
last two equations are the mass continuity and thermal wind equations,
respectively. We have neglected the nonlinear terms involving the mean
flow but we keep the larger eddy flux terms on the right-hand sides.

The velocities, v and w, are related through an Eulerian mean stream-
function,

(v, w) = (−à÷màz , à÷mày ) . (15.27)

If N2 is a function only of z then, as in Section 9.3.1, we can define a
‘bolus’ or ‘edy-induced’ streamfunction,÷e, (althoughnote that theEulerian
streamfunction is also affected by eddies) and a residual streamfunction,
÷∗, by

÷e = 1N2 v�b� , ÷∗ = ÷m + ÷e, (15.28a,b)

so that the components of the residual velocities are

v∗ = −à÷∗àz = v − ààz ( 1N2 v�b�) , (15.29a)

w∗ = à÷∗ày = w + àày ( 1N2 v�b�) . (15.29b)

Using these expressions (15.26a,b) may then be written in the TEM form

àu
àt − fv∗ = v�q� + àóàz , àb

àt +N2w∗ =H . (15.30a,b)

where

v�q� = − àày u�v� + ààz ( fN2 v�b�) , (15.31)

and just as in our discussion in Section 9.3 the eddy terms only explicitly
appear in the momentum equations. If the horizontal scales of the eddies
are larger than the deformation radiusNH/f then the eddy momentum
flux term will be smaller than the eddy buoyancy flux and we may ignore
it. In this case the steady momentum equation becomes

− fv∗ = àóàz + ààz (fv
�b�
N2 ) . (15.32)
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The first term on the right-hand side of (15.32) is the Eulerian con-
tribution to the residual flow. Since ó is large and positive at the surface
(because of the wind forcing) and also large and positive at the ocean floor
(because of frictional and topographic effects) the Eulerian circulation
is clockwise, as in the blue circulation in Fig. ??. The bolus circulation
tends to oppose this, although it is harder to see this without a detailed
calculation. The eddy buoyancy fluxes reach a maximum a little below the
surface, so that in the upper ocean the eddy contribution, ve, is given by

− fve = ààz (fv
�b�N2 ) > 0 (15.33)

and ve < 0. Below this level ve > 0 and the eddy contribution is polewards,
as shown by the black arrows in Fig. 15.12.

To go further we need to introduce an closure for the eddy buoyancy

flux, such as v�b� = −Kàb/ày, and (15.33) becomes

− fv∗ = àóàz + f ààz (Ksb). (15.34)

where sb = −(àyb)/N2 is the slope of the isopycnals (sinceN2 ≈ àb/àz). If
we know whatK is then we begin to have a quantitative theory, but we
shall stop here.

.. Connection to the World Ocean

The fact that the ACC is strongly eddyingmodifies but does not qualitatively
change the central role of the Southern Ocean in the globalMOC. However,
there is one adaptation we must make, and it is that the circulation in the
basins must connect smoothly to the residual circulation of the ACC, not
the Eulerian circulation, because it is the residual circulation that best
represents the flow of water parcels. In fact we should couch the entire
circulation in terms of the residual flow, but in the basin regions the eddy
contribution is relatively small. A second point to make is that theMOC

of the real ocean is truly global, meaning that it spans basins and over the
course of centuries a water parcel may find itself in the Atlantic, Pacific or
Indian Oceans. We leave the interested reader to explore that elsewhere.

Notes and References

Much of themodern theory of the thermocline originates frompapers by Robinson
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