Thermodynamics Lectures, 2017 1
Lectures on the Thermodynamics of Seawater and Ice,

by Trevor J. McDougall

(of the School of Mathematics and Statistics,
University of New South Wales, Sydney, Australia)

Motivation for the first lecture

As heat is exchanged between the atmosphere and the ocean, how can we keep
track of “heat” in the ocean? Here is a plot of the isobaric specific heat capacity
of seawater.

Figure 4. Contours of isobaric specific heat capacity ¢, of
seawater (inJ kg™' K™), at p =0.

Here is a zoomed-in plot of the isobaric specific heat capacity of seawater.
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For the purpose of this introductory lecture, just think of potential temperature
0 as simply temperature.

A given air-sea heat flux will affect the potential temperature 6 in the ocean at a
rate that depends on where you are on this §, -6 diagram. That is, the change

in temperature at the sea surface due to a Joule of heat being transferred from
the atmosphere into a kilogram of seawater, at constant salinity, is equal to the
reciprocal of c, (SA,G,O) .

So what variable represents the “heat content per unit mass” of seawater? It
clearly is not simply potential temperature 6 . Nor is it the product 6¢, (S A,O,O)
(for at least two reasons, (1) because Ocp(SA,Q,O) # jcp(SA,G,O) df and (2)
because the “heat content” of seawater also depends separately on salinity
(dhy = dh(S,.6.,0) = c,(5,.6,0)d6 + iy (5,.6,0)dS,, with the enthalpy / being
a credible candidate for “heat content” at this stage).

And even if we were able to answer this question of “what is the “heat content”
per unit mass” of seawater at p =0, what do we do in the sub-surface ocean
where changes in pressure and specific volume v cause changes in the internal
energy u and enthalpy # of —Pdv and vdP respectively?

In short, we are asking the question

“what is “heat” in the ocean?”.

that is, more specifically, we are asking what is the “heat content per unit mass” of
seawater, applicable throughout the ocean at all depths. We seek a “heat content
per unit mass” variable whose transport and turbulent mixing can be used to
track the transport and the turbulent mixing of the heat that enters the ocean
across the air-sea boundary and across the sea floor (the geothermal heat flux).
This paragraph neatly summarizes the purpose of the first several lectures of
this course.
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The route to answering our question, “what is “hear” in the ocean?”

In order to answer this question we need to have a thorough understanding of

the First Law of Thermodynamics which in turn, can only be derived from the

Conservation Equation for Total Energy, which in turn relies on the

Fundamental Thermodynamic Relation, which in turn embodies the definition

of entropy and the Second Law of Thermodynamics. In the coming lectures we

will derive each of these three equations, but for now, here they are.

The Continuity Equation is

The Fundamental Thermodynamic Relation is

The Conservation Equation for Total Energy is
(pZ) +V-(puZ) = pdZ/dt = -V -([p+£ Ju) -V -F* -V -F®
+V~(vaiS°V%|:u-u]) .

where the total energy Z per unit mass is defined as the sum of

the internal, kinetic and gravitational potential energies, that is,

p,+V-(pu)=01. (A21.2)

du+(p+PB)dv = di—vdP = (T, +¢)dn + pds, |. (A.7.1)

(B.15)

F=u+luu+d. (B.14)

The First Law of Thermodynamics is

dn dp du dv dn s,
——v—| = —+|p+E)— | = T +t)—+ u—=
p[dt dej p(dr (p O)dt] p((o Va “drj . (B.19)

= —V-F*-V-F%+ pe

Nomenclature

h is specific enthalpy and u is specific internal energy, related by
h=u+Pyv = u+( p+P('))v (“specific” means “per unit mass of
seawater”)

v is the specific volume

7 is specific entropy

U is the relative chemical potential of seawater
S

A

is the Absolute Salinity of seawater

FR is the radiative flux of heat

F? is the molecular flux of heat

€ is the rate of dissipation of kinetic energy

Equations numbers are from the TEOS-10 Manual,

IOC, SCOR and IAPSO, 2010: The international thermodynamic equation of
seawater — 2010: Calculation and wuse of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides
No. 56, UNESCO (English), 196 pp. Available from www.TEOS-10.org

Many of the topics that we cover are discussed in more detail in the TEOS-10
Manual www.teos-10.org/pubs/TEOS-10 Manual.pdf. You should download it to

your computer; it is over 200 pages.

A comprehensive list of nomenclature (Thermo_Nomenclature_2017.pdf) is

being distributed to the class.
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The continuity equation
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Fig. 1.1 Mass conservation in a cubic Eulerian control volume.

Thus, the accumulation of fluid within the control volume, due to motion in the x-
direction only, is

8y8z[(pu)y — (PU)x 18] = —%8.\'8}'8:. (1.25)
X

To this must be added the effects of motion in the y- and z-directions, namely

B [a(pv) N 3(Pw)]8_\.8".8___ (1.26)
a)- 0z

This net accumulation of fluid must be accompanied by a corresponding increase of
fluid mass within the control volume. This is

dp
o’
because the volume is constant. Thus, because mass is conserved, (1.25), (1.26) and
(1.27) give
i) 0 0 0
sxvi- | 22 . (pu) + (pv) + CON
’ ot ox ay 0z

Because the control volume is arbitrary the quantity in square brackets must be zero
zero and we have the mass continuity equation:

;_t (Density x Volume) = §x8yé:z (1.27)

(1.28)

38—':’+V.(pv)=o. (1.29)

For a finite, arbitrary volume that is fixed in space ...

and if the arbitrary volume moves and changes shape, the continuity equation
becomes

ijpdV = [pv-ds = [V-(pv)ar
ar ! )
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The material derivative

The material derivative i—? is the derivative following the flow.

Let us suppose that a fluid is characterized by a (given) velocity field v (x, ¢), which
determines its velocity throughout. Let us also suppose that it has another property ¢,
and let us seek an expression for the rate of change of ¢ of a fluid element. Since ¢ is
changing in time and in space we use the chain rule:

_ ¢y, b5 0bs s 0P .
8 = 5781 + Zo0x + ZEBy + =78z = =281 +8x - Vg, (1.4)

7

This is true in general for any ¢, 8x, etc. Thus the total time derivative is

dg _ 29  dx

Vo. 1.5
dt ot dt ¢ (1.5

If this is to be a material derivative we must identify the time derivative in the second
term on the right-hand side with the rate of change of position of a fluid element, namely
its velocity. Hence, the material derivative of the property ¢ is

d _ 99

-Vo. .
3 a’+v ¢ (1.6)
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A brief introduction to Absolute Salinity and Practical Salinity

Practical Salinity S, has been measured and reported by oceanographers for 37
years (since it was defined in 1978). Practical Salinity is found from knowledge

of a seawater sample’s in situ temperature, pressure and electrical conductivity.

In the past ten years it has become acknowledged that the composition of
seawater is not constant throughout the world ocean, and that the spatially
variable ratio of the constituents leads to horizontal gradients of density that are
too large to ignore (leading to ~1Sv change in the meridional [northward]
vertical overturning circulation of the North Atlantic).

This issue is an active area of research, but will not be a central part of this
course. We will deal with only one salinity variable, namely Absolute Salinity
S, , as defined by TEOS-10.

For completeness, we will make a few remarks comparing four salinity
variables
Practical Salinity, Sp
Reference Salinity, S,
Absolute Salinity, S,
Preformed Salinity, S.

“Standard Seawater” has (reasonably well) known composition, but the
Practical Salinity S}, of Standard Seawater is not quite equal to the mass fraction
of dissolved material in seawater. Rather, this mass fraction for Standard
Seawater is estimated to be the Reference Salinity, S} , of TEOS-10,

[35.165 04 gkg™
Sy = | 22 EXE

s JSP = Uy S, - (2.4.1)

“Standard Seawater” is based on surface water from the North Atlantic, and
it contains no nutrients. Deeper in the ocean, and particularly in the deep
Southern Ocean and the deep North Pacific, the concentration of nutrients is
high (as a result of biogeochemical processes). Nutrients do not conduct
electricity very well (particularly silicic acid which is almost non-conductive)
and so an estimate of salinity based on a sample’s electrical conductivity
underestimates the mass fraction of dissolved material and so underestimates
the density of seawater.

Given sufficient measurements of nutrients, we can now allow for their
presence on the mass fraction (and on the density) of seawater according to

(S\—Sx)/(gkg™) =

. (A4.10)
(55.6 ATA +4.7 ADIC+38.9NO; +50.7 Si(OH), ) / (molkg™)

(TA is Total Alkalinity, DIC is Dissolved Inorganic Carbon, NOj is nitrate and
Si(OH), is silicate, or silicic acid).

We normally do not have these measurements, so TEOS-10 also provides an
algorithm to evaluate Absolute Salinity from a spatial look-up table of the
Absolute Salinity Anomaly Ratio, R’

S, = SR[l + R?(long, lat, p)] . (A.5.10)

The subroutine gsw_SA_from_SP converts from Practical Salinity S, to
Absolute Salinity S, .

The Absolute Salinity S, is the correct salinity argument to be used to
evaluate density and other thermodynamic properties.
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The Absolute Salinity Anomaly, 65, =S, -S

RI
today’s salinity estimates compared to those of the Practical Salinity era (1978 -

is the improvement in

2009). This improvement is shown in the following two figures.

Figure 2 (a). Absolute Salinity Anomaly ¢S, at p =2000 dbar.

Figure 2 (b). A vertical section of Absolute Salinity Anomaly 65, along 180°E
in the Pacific Ocean.
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The horizontal gradients of density are responsible for driving the world’s deep
ocean currents (via the so-called “thermal wind” equation). The neglect of the
spatial variation of seawater composition (that is, the use of S}, instead of S, in
the evaluation of density) leads to non-trivial errors in the horizontal density
gradient. Globally, half the ocean below 1000 dbar is affected by more than 2%
(see Fig. A.5.1) while in the North Pacific, half the ocean below 1000 dbar is
affected by more than 10%.

Figure A.5.1. The northward density gradient at constant pressure (the
horizontal axis) for data in the global ocean atlas of Gouretski and Koltermann
(2004) for p >1000dbar. The vertical axis is the magnitude of the difference
between evaluating the density gradient using S, versus Sy as the salinity
argument in the TEOS-10 expression for density.
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We now introduce Preformed Salinity S.. Preformed Salinity S. is
designed to be as close as possible to being a conservative variable. That is, S. is
designed to be insensitive to the biogeochemical processes that affect the other
types of salinity to varying degrees. . is formed by first estimating the
contribution of biogeochemical processes to S,, and then subtracting this
contribution from §, . Because it is designed to be a conservative oceanographic
variable, S, is the ideal salinity variable for ocean modeling.

As a practical thing, the difference S —S, is taken to be 0.35(S A —SR) .

Figure A.4.1. Number line of salinity, illustrating the differences between
Preformed Salinity S., Reference Salinity S;, and Absolute Salinity §, for
seawater whose composition differs from that of Standard Seawater.

For seawater of Standard Composition, S, = S; = §, = (35.165 04 gkg_1/35)SP,
but when the seawater sample has undergone some biogeochemical activity, its
nutrient levels will be greater than zero, its conductivity will be increased a little
and its Absolute Salinity will be increased more. Specifically, if the increase in
Absolute Salinity due to the change in chemical composition, §, —S,, is say 1.35
on some scale, then only 0.35/1.35 (~26%) of this increase will be reflected in the
sample’s electrical conductivity and hence in its Practical Salinity and Reference
Salinity.

In this course we will deal exclusively with Absolute Salinity, and we will
also simplify things and consider Absolute Salinity to be a Conservative
variable. That is, we will assume that

ds
(pSA),+V'(P“SA) = pd—tA =-V-F® |, approximate (A.21.8a)

where F° is the molecular flux of salt. It is actually the Preformed Salinity S,
that obeys such a conservative evolution equation, namely

(pS:),+V-(puS.) = pdj;* =-V.F. (A21.1)

By making the assumption that Absolute Salinity obeys the conservative
equation (A.21.8a) rather than the real form of this equation, namely

(pS,),+V-(pus,) = pdditA =-V-F’+pS% (A.21.8)

. . S . . .
we are ignoring $°*, the non-conservative source term. This non-conservative
source term is due to biogeochemical processes, for example, the remineralization
of biological material; the turning of particulate matter into dissolved seasalt.

For numerical integrations of an ocean model that exceed about a century, this
neglect will be significant, leading to errors in the “thermal wind” 1.35 times as
large as those described above in Fig. A.5.1. For shorter numerical integrations,
the errors will be small. For small time, the important thing is that the
expression for density is being called with Absolute Salinity as the salinity
argument, not Reference or Practical Salinity. Over the first few decades of
integration the errors will be small, and then they will build to be 1.35 times
those in Fig. A.5.1 above.
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Who was J. W. Gibbs?

10

10
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Josiah Willard Gibbs (February 11, 1839 — April 28, 1903) was
an American scientist who made important theoretical
contributions to physics, chemistry, and mathematics. His work
on the applications of thermodynamics was instrumental in
transforming physical chemistry into a rigorous deductive
science. Together with James Clerk Maxwell and Ludwig
Boltzmann, he created statistical mechanics (a term that he
coined), explaining the laws of thermodynamics as
consequences of the statistical properties of large ensembles of
particles. Gibbs also worked on the application of Maxwell's
equations to problems in physical optics. As a mathematician, he
invented modern vector calculus (independently of the British
scientist Oliver Heaviside, who carried out similar work during the
same period).

In 1863, Yale awarded Gibbs the first American doctorate in
engineering. After a three-year sojourn in Europe, Gibbs spent
the rest of his career at Yale, where he was professor of
mathematical physics from 1871 until his death. Working in
relative isolation, he became the earliest theoretical scientist in
the United States to earn an international reputation and was
praised by Albert Einstein as "the greatest mind in American
history".

In 1897 he was elected a Member of the National
Academy of Sciences in the USA, and as a foreign member of
the Royal Society of London, and in 1901 Gibbs received what
was then considered the highest honor awarded by the
international scientific community, the Copley Medal of the Royal
Society of London, "for his contributions to mathematical
physics". But Gibbs was so retiring he had the US naval attaché
in London collect the medal on his behalf.

Commentators and biographers have remarked on the
contrast between Gibbs's quiet, solitary life in turn of the century
New England and the great international impact of his ideas.
Though his work was almost entirely theoretical, the practical
value of Gibbs's contributions became evident with the
development of industrial chemistry during the first half of the
20th century. According to Robert A. Millikan, in pure science
Gibbs "did for statistical mechanics and for thermodynamics what
Laplace did for celestial mechanics and Maxwell did for
electrodynamics, namely, made his field a well-nigh finished
theoretical structure."

Maxwell was an admirer and collaborator of Gibbs, and
Maxwell's early death in 1879, at the age of 48, precluded further
collaboration between him and Gibbs. The joke later circulated
in New Haven that "only one man lived who could understand
Gibbs's papers. That was Maxwell, and now he is dead."

When Dutch physicist J. D. van der Waals received the 1910
Nobel Prize "for his work on the equation of state for gases and
liquids" he acknowledged the great influence of Gibbs's work on
that subject. Max Planck received the 1918 Nobel Prize for his
work on quantum mechanics, particularly his 1900 paper on
Planck's law for quantized black-body radiation. That work was
based largely on the thermodynamics of Kirchhoff, Boltzmann,

11
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and Gibbs. Planck declared that Gibbs's name "not only in
America but in the whole world will ever be reckoned among the
most renowned theoretical physicists of all times."

The “Gibbs Phenomenon” is another well-known example of
his influence; this being the sine integral showing the overshoot
and ringing of a Fourier Series approximation to a step function.

12
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Basic Thermodynamic Concepts: internal energy, enthalpy and Pd}V work

Consider a fluid in a piston arrangement shown below. The fluid receives an
amount of heat Q0 and mechanical work is done on the fluid at the rate W . The
internal energy of the fluid U, changes by the amount AU =Q+ W .

Internal energy u represents (1) the kinetic energy involved in the vibration
of molecules plus (2) the potential energy of chemical bonds and electrostatic
charges. For liquids, and especially for water, this second aspect to internal
energy is extremely important, while for a perfect gas, only the first part counts.
Understanding thermodynamics from the scale of molecular behaviour is the field
called “statistical thermodynamics”; we will not touch on this in these lectures.

The most common type of work W done on or by a fluid is the work done
by compression or expansion, as in the following figure. This is how a car
internal combustion engine extracts useful work from the high pressure gas that
results from igniting the fuel-air mixture in an engine cylinder.

For infinitesimal changes we can write dU + PdV = 6Q. Defining
enthalpy H as H=U + PV our attempt at writing down “energy conservation”
so far can be written as

dH -VdP = 60. (~B.1a)
To motivate enthalpy H consider how much energy is required to magically
create a blob of fluid out of nothing, and place it at its present location at
pressure P.

13
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Entropy and the Second Law of Thermodynamics

A “closed system”, such as the piston illustration on the previous page, is one
where there is exchange of heat with the environment, and there is mechanical
work done between the system and the environment, but there is no exchange of
mass of any species. That is, for seawater, a “closed system” is a seawater parcel
with fixed mass of both water and of salt, and having no exchange of water or
salt with the surrounding fluid.

We begin by repeating our progress so far with the conservation of energy for a
“closed system”, but now written in terms of “specific” variables, that is
variables that represent the amount of stuff per unit mass of seawater,

dh —vdP = 8q . (~B.1b)

For a “closed system” the Second Law of Thermodynamics states that
1. there is a state variable entropy 1 = n(S T ,P) whose infinitesimal

changes obey
dn = % , for a closed system (2nd_Law)
2. and that irreversible processes (like diffusion and turbulent mixing)

always result in the production entropy.

Entropy represents the amount of “disorder” in a system, and things naturally
become more disordered in nature.

Note that dq itself is a complicated animal (which I passionately dislike). It is not
the divergence of a flux; for example the dissipation of turbulent kinetic energy,
g, is part of 8q. I emphasise that this dissipation & heats the fluid but it is not
the divergence of a heat flux. This nasty nature of 8¢ is why it is written as dq
rather than dg. g is not a total differential and ¢ is not a state variable, that is
q * q(SA,T,P).

We can combine Eqns. (~B.1b) and (2¢_Law) to find
dh —vdP = Tdn for a closed system (Fundamental_Closed)

This is the Fundamental Thermodynamic Relation for a closed system; it applies
when there are no variations of Absolute Salinity (e.g. it applies to a lake). Itis a
differential relationship between three state variables, specific enthalpy, specific
volume and specific entropy.

The Fundamental Thermodynamic Relation (or Gibbs relation)

Now we will generalize this relationship to an “open system” where the system
exchanges not only heat and work energy with its environment, but it also
exchanges mass. That is, a seawater parcel that is an “open system” exchanges
not only “heat” and “work”, both also water and salt with its environment.

Consider a situation where we have a seawater parcel exchanging water
and salt with its environment at constant temperature and pressure. It is
simplest to assume that there is no change in the parcel’s total mass.
Specifically, envisage two seawater parcels that are in contact with each other,
having different Absolute Salinities but the same temperature and pressure. A
small part of each parcel is now exchanged with the other parcel, with the
amount exchanged in both directions having the same mass.

We now define the “system” as being one of these two seawater parcels. If
the system were closed we would have the relation d# —vdP = Tdn but now
the change in the seawater sample’s enthalpy and entropy must incorporate the

14
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change in the Absolute Salinity dS, . By Taylor series expansion of h(S oL ,P)
and n(S T ,P), the changes in enthalpy and entropy are related to those of the
corresponding closed system by

dh = o 4 ;Th as, (dh)
Alr,p
close a
dnzdnld+£ ds, . (dn)
Alr, p

We know that dr®*! —vdP = Tdn“** and these three equations can be
combined to find

oh on
dh —vdP = Tdn + | — - T—4
Y g [ 38

T,P A

aS

A

ds, . (dh - Tdn)
T,P

This is the Fundamental Thermodynamic Relation. We can write it in more
familiar nomenclature once we have defined the Gibbs function (also called
“free enthalpy” and sometimes “free energy”) by

g(S,.T.P)=g=h-Tn =u+Pv—Tn|. (definition_of g)

We also use the symbol u for the relative chemical potential of seawater defined as
the partial derivative of the Gibbs function with respect to Absolute Salinity,

u= E)aTg (or u= gs, ) (rel chem pot)

Alr,p

This gives the usual form of the Fundamental Thermodynamic Relation (FTR)

du+(p+B)dv = dh—vdP = (T,+t)dn+ uds, |. (FTR)

Here we have written the Absolute Pressure P as p + F, where F, = 101325 Pa
is the pressure of one standard atmosphere and p is the “sea pressure”, and we
have written the Absolute Temperature T = T, +¢ as the sum of the Celsius
zero point T, = 273.15 K and the temperature ¢ in degrees Celsius.

In Tutorial class you will be asked to prove that (using g = g(S T ,P) )

o

=—-g., V= and ¢ = —]
1 &r g P9
A

=—(T0+t)gTT . (n,vand c,)
P
The Gibbs function is a thermodynamic potential, from which all thermodynamic
properties can be found by simple operations such as differentiation.

The alternative name of “free enthalpy” comes from considering again the
amount of energy required to create our seawater parcel out of nothing. The
total amount of energy required per unit mass is & but some of this energy,
namely 77, can be extracted from the environment if the parcel is created
slowly enough so it is always at the temperature 7 of the environment.

15
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Review of the last lecture

We learnt that the Practical Salinity variable, defined in 1980, is essentially a
measure of the electrical conductivity seawater, but is blind to spatial variations
of the concentrations of nutrients which affect the density and the electrical
conductivity of a seawater sample differently to how the major dissolved ions
affect density and conductivity.

This has now been addressed, and beginning in 2010 oceanographers have a
new variable, Absolute Salinity, S,, which better represents thermodynamic
quantities such as density. This definition of seawater salinity and the Gibbs
function of seawater goes by the name of the

International Thermodynamic Equation Of Seawater — 2010,
or TEOS-10, see www.TEOS-10.org.

We derived the Gibbs Relation, or Fundamental Thermodynamic Relation

du+(p+B)dv = dh—vdP = (T,+t)dn + uds, |. (FTR)

which is a relationship between the total differentials of several state variables,
u,v,h,n and pu.

We defined the Gibbs function in terms of enthalpy and entropy by

g(S,.T.P)=g=h-Tn =u+Pv—Tn|. (definition_of g)

All the thermodynamic properties of a fluid can be derived from this one
“parent” function, g(SA,z, p), by simple mathematical operations such as
differentiation. Hence the fundamental importance of the Gibbs function for a
substance.

As for understanding the difference between enthalpy #, internal energy u
and the Gibbs function g we learnt that enthalpy is a better estimate of the total
amount of thermodynamic energy in a fluid parcel, recognizing that the parcel’s
creation involved pushing its environment out of the way (because it occupies
volume v (per unit mass) at ambient Absolute Pressure P). Enthalpy 7 is
useful for understanding processes that occur at constant pressure, while
internal energy u is useful for understanding processes that occur at constant
volume.

The Gibbs function g =h—1Tn is the part of enthalpy # that is “free” or
“available”. The part 7n of h is not available “for sale” on the energy market,
because it is not “available” to do any useful work. Hence the Gibbs function is
sometimes called “free enthalpy” or “free energy”. The adjective “available”
makes sense if you are selling the energy of the seawater parcel to someone who
wants to use the energy of the parcel to do some useful work in say an energy
cycle machine. The adjective “free” makes sense if you consider yourself to be
the magician, creating the seawater parcel out of nothing, and getting a free ride
from the environment to the extent 77.

Warning on Nomenclature. For the state variables such as u, v, h,n we

use lower case letters when they are per unit mass (“specific” variables), and
upper case when they represent the total amount of that quantity in a mass of
fluid of mass M . But the use of upper case P and T is different. These upper
case letters stand for Absolute Pressure (in Pa =Nm™) and Absolute
Temperature (K ), while the lower case letters p and ¢ are for p = P— F, (often
in units of dbar)and ¢ =7 — T} (in degrees Celsius).

P = 101 325 Pa (=10.1325 dbar), and

0
T,=273.15K.

0

16
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A rough derivation of the First Law of Thermodynamics for a pure substance

For a pure fluid in which there is no dissolved material (such as pure water with
zero Absolute Salinity) the derivation of the First Law of Thermodynamics
usually starts with our Eqn. (~B.1b), namely di — vdP = &g, written in terms of
material derivatives as (where d¢g is now “per unit volume” rather than “per
unit mass”)

p(% - v%) = i—;] for pure water (B.1)
Now we have to guess what the nasty, obnoxious, odious, 5q/ d¢ term might be.
We know that there is such a thing as the molecular flux of heat FO= - pckaVT
(where k7 is the molecular diffusivity of temperature) whose (negative)
divergence one might imagine should be part of 8¢/df. We know there is such
a thing as the radiative heat flux F* whose (negative) divergence should also be
part of 8q/dt. We also know that when the kinetic energy of turbulent motions
is dissipated by the molecular viscosity, energy changes from its kinetic form to
its “heat” form”, and the fluid warms up as a result. So we do the sensible thing
and add this term to 8¢/dt. This term is written as pe where ¢ is the rate of
dissipation of kinetic energy per unit mass of fluid. After this educated
guesswork we have the First Law of Thermodynamics for a pure substance,

dh dP oq R
——v— === -V.F*-V.F%+ pe. B.2
p( A j 4 pE for pure water (B.2)

So far so good; this educated guesswork has allowed us to arrive at a correct

result in this simple case for a fluid that is a pure substance.

But we have actually assumed that the molecular flux of heat appears on the
right-hand side as V~( pc k'VT|. We have no right to assume that. We cannot
rule out the form pch- k'VT| for example, for this term. So, what will turn
out to be the key feature of Eqn. (B.2), namely that apart from pe the other
terms on the right-hand side appear as flux divergences, we have actually
assumed, not proven. This is not satisfactory and we must do better.

A false start at deriving the First Law of Thermodynamics for seawater

But lets stay with this rough, hand-waving approach for a little bit longer, and
see how far we can get with deriving the First Law of Thermodynamics for
seawater when there are spatial variations of Absolute Salinity. The same
traditional discussion of the First Law of Thermodynamics involving the
“heating” and the application of compression work (as in Eqn. (~B.1a) above),
and now the change of salinity to a fluid parcel shows that the change of

enthalpy of the fluid parcel is given by (u — [TO +t] U, being hSA . P)

dH - VAP = 60 + (u — [Ty +t]py )M dS,, (B.3)

where M is the mass of the fluid parcel. When written in terms of the specific
enthalpy %4, and JQ per unit volume (dg), this equation becomes (using
pdS, /dt = -V -F%)

p(%—v%) = % — (- [T+ ]uy V5. (B.4)
Does this help with the task of constructing an expression for the right-hand side
of (B.4) in terms of the dissipation of mechanical energy and the molecular,
radiative and boundary fluxes of “heat” and salt? If the “heating” term d¢/d¢ in
Eqn. (B.4) were the same as in the pure water case, Eqn. (B.2), then we would
have successfully derived the First Law of Thermodynamics in a saline ocean via
this route. However, we will now show that d¢g/d¢ in Eqn. (B.4) is not the same
as that in the pure water case, Eqn. (B.2).
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Substituting the expression for dg/d¢ from (B.2) into the right-hand side of
(B.4) we find that the right-hand side is not the same as the First Law of
Thermodynamics (B.19) which we derive below (this comparison involves using
the correct expression (B.27)) for the molecular flux F?). The two versions of
the First Law of Thermodynamics are different by
B g
FS.V(‘u—[To+t]uT) + V'[WT:—H]FS]' (B.5)
Note that the fact that the right-hand side of Eqn. (B.4) is not the divergence of a
flux was already apparent in that equation; this is a damning shortcoming. This
inconsistency means that the rather poorly defined “rate of heating” d¢q/dt must
be different in the saline case than in the pure water situation by this amount.
We know of no way of justifying this difference, so we conclude that any
attempt to derive the First Law of Thermodynamics via this route involving the
loosely defined “rate of heating” Jq/dt is doomed to failure. This is not to say
that Eqn. (B.4) is incorrect. Rather, the point is that it is not useful, since 8g/d¢
cannot be deduced directly by physical reasoning.

In particular, the expression in (B.5) is not the divergence of a flux and so
when two parcels are mixed at constant pressure, enthalpy will not be
conserved (see later). We were able to correctly guess the form of the right-hand
side of the First Law of Thermodynamics in the case of pure substance, but in
the presence of salinity gradients, our intuition fails us. Let’s stop this guessing
game and derive the First Law of Thermodynamics properly.

18
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The proper derivation of the First Law of Thermodynamics for seawater

Since there is no way of deriving the First Law of Thermodynamics that
involves the “heating” term dq/dt, we follow Landau and Lifshitz (1959) and de
Groot and Mazur (1984) and derive the First Law via the following circuitous
route. Rather than attempting to guess the form of the molecular forcing terms
in this equation directly, we first construct a conservation equation for the total
energy, being the sum of the kinetic, gravitational potential and internal
energies. It is in this equation that we insert the molecular fluxes of heat and
momentum and the radiative and boundary fluxes of heat. We know that the
evolution equation for total energy must have the conservative form, and so we
insist that the forcing terms in this equation appear as the divergence of fluxes.

Having formed the conservation equation for total energy, the known
evolution equations for two of the types of energy, namely the kinetic and
gravitational potential energies, are subtracted, leaving a prognostic equation for
either internal energy or enthalpy, that is, the First Law of Thermodynamics.

We start by developing the evolution equations for gravitational potential
energy and for kinetic energy (via the momentum equation). The sum of these
two evolution equations is noted. We then step back a little and consider the
simplified situation where there are no molecular fluxes of heat and salt and no
effects of viscosity and no radiative or boundary heat fluxes. In this “adiabatic”
limit we are able to develop the conservation equation for total energy, being the
sum of internal energy, kinetic energy and gravitational potential energy. To
this equation we introduce the molecular, radiative and boundary flux
divergences. Finally the First Law of Thermodynamics is found by subtracting
from this total energy equation the conservation statement for the sum of the
kinetic and gravitational potential energies.

We start by writing the Fundamental Thermodynamic Relation (FTR) in
terms of material derivatives following the instantaneous motion of a fluid

parcel d /df = a/at|x s +u-V,

d d dh 1dP
- ( 0)_v_ =<

—+(p+PF =
PPl T pdi

dn ds,
+t)—+ u—= . B.6
" )=+ (B.6)

Gravitational potential energy

If the gravitational acceleration g is taken to be constant the gravitational
potential energy per unit mass with respect to the height z = 0 is simply gz.
Allowing g to be a function of height means that the gravitational potential
energy per unit mass ® with respect to some fixed height z, is defined by

= j g(2) dz'. (B.7)
20
At a fixed location in space ® is independent of time while its spatial gradient is
given by V@ =gk where k is the unit vector pointing upwards in the vertical
direction. The evolution equation for ® is then readily constructed as

(p0),+ V- (pou) = pS2 = pew, (B.9)

where w is the vertical component of the three-dimensional velocity, that is
w=u-k. (Clearly in this section g is the gravitational acceleration, not the
Gibbs function). Note that this local balance equation for gravitational potential
energy is not in the form

(pC),+ V- (puC) = pt—f = -V-F (A.8.1)

that is required of a conservative variable, since the right-hand side of (B.8) is

not minus the divergence of a flux.
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Momentum evolution equation

The momentum evolution equation is derived in many textbooks including
Landau and Lifshitz (1959), Batchelor (1970), Gill (1982) and Griffies (2004). The
molecular viscosity appears in the exact momentum evolution equation in the
rather complicated expressions appearing in equations (3.3.11) and (3.3.12) of
Batchelor (1970). We ignore the term that depends on the product of the
kinematic viscosity v'*° and the velocity divergence V-u (following Gill

(1982)), so arriving at

pi—l; + fkxpu = —VP—pgk+V-(pv“S°V71), (B.9)

visc

™ is the kinematic viscosity and Vu is
twice the symmetrized velocity shear, Vu = (aui / dx,+ du; / axl.). The centripetal
acceleration associated with the coordinate system being on a rotating planet can

where f is the Coriolis frequency, v

be taken into account by an addition to the gravitational acceleration in (B.9)
(Griffies (2004)).

Kinetic energy evolution equation

The kinetic energy evolution equation is found by taking the scalar product of
Eqn. (B.9) with u giving

(p%u-u)t +V-(pullu-u])
= pd(%u-u)/dt =—-u-VP —pgw+V-(vaiSCV%[u-u])—pE,

where the dissipation of mechanical energy ¢ is the positive definite quantity

(B.10)

£ = %vVisc(ﬂ-VAu). (B.11)

Evolution equation for the sum of kinetic and gravitational potential
energies
The evolution equation for total mechanical energy lu-u +® is found by

2
adding Eqns. (B8) and (B10) giving

(p[%u~u+(l>])l +V-(pu[%u~u+(l)]) | 512
= pd(%wu + <I>)/dt =-u-VP + V~(pv“S°V%[u-u:|) — pE.

Notice that the term pgw which has the role of exchanging energy between the

kinetic and gravitational potential forms has cancelled when these two evolution
equations were added.

20



Thermodynamics Lectures, 2017 21
Conservation equation for total energy E in the absence of molecular
fluxes

In the absence of molecular or other irreversible processes (such as radiation of
heat), both the specific entropy 7 and the Absolute salinity S, of each fluid
parcel is constant following the fluid motion so that the right-hand side of the
FTR, Eqn. (B.6), is zero and the material derivative of internal energy satisfies
du/dt = —(p+F,))dv/dt so that the internal energy changes only as a result of the
work done in compressing the fluid parcel. Realizing that v=p~' and using the
continuity Eqn. (A.8.1) in the form dp/ds + pV-u =0, du/ds can be expressed in
this situation of no molecular, radiative or boundary fluxes as
du/dt = —p™ (p+PF)V-u. Adding this equation to the inviscid, non-dissipative
version of the mechanical energy equation, Eqn. (B.12), gives

(pE )t +V-(puE) = pdE /dt = —Vo([p+P0]u) , no molecular fluxes (B.13)
where the total energy

F=u+luu+® (B.14)

is defined as the sum of the internal, kinetic and gravitational potential energies.

Note that this is the first variable that we have considered so far which has
the right-hand side being the divergence of a flux. This was not true of the
gravitational potential energy, Eqn. (B.8), it was not true of the kinetic energy
equation, (B.10), and it was not true of the sum of the kinetic and gravitational
potential energies, Eqn. (B.12). Note that the divergence-as-right-hand-side is
not true of either (B.8), (B.10) or (B.12), even for flows without molecular fluxes.
That fact that we have now found a variable, Z, whose evolution equation
(B.13) has a right-hand-side which is the divergence of something in this
adiabatic isohaline limit is extremely important. For example, if we substitute
enthalpy # for internal energy u in the quantity Z', we lose this property.

Conservation equation for total energy in the presence of molecular
fluxes

Now, following section 49 Landau and Lifshitz (1959) we need to consider how
molecular fluxes of heat and salt and the radiation of heat will alter the
simplified conservation equation of total energy (B.13). The molecular viscosity
gives rise to a stress in the fluid represented by the tensor ¢, and the interior
flux of energy due to this stress tensor is u-6 so that there needs to be the
additional term —-V-(u-0) added to the right-hand side of the total energy
conservation equation. Consistent with Eqn. (B.9) above we take the stress
tensor to be 6=—pv"*Vu so that the extra term is V~(vaiSCV%[u-u]). Also
heat fluxes at the ocean boundaries and by radiation F® and molecular
diffusion FQ necessitate the additional terms —V-F® —V.FQ. At this stage we
have not specified the form of the molecular diffusive flux of heat FQ in terms of
gradients of temperature and Absolute Salinity; this is done below in Eqn. (B.24).
The total energy conservation equation in the presence of molecular, radiative
and boundary fluxes is

(pZ) +V-(puZ) = pdZ/dt = -V -([p+£ Ju) -V -F* -V .F®
+V~(vaiS°V%|:u-u]).

The right-hand side of the Z conservation equation (B.15) is the divergence of a

(B.15)

flux, ensuring that total energy Z is both a “conservative” variable and an
“isobaric conservative” variable (see appendix A.8 for the definition of these
characteristics).
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Two alternative forms of the conservation equation for total energy

Another way of expressing the total energy equation (B.15) is to write it in a
quasi-divergence  form, with the temporal derivative being of
pE = p(u+%u~u+d)) while the divergence part of the left-hand side is based
on a different quantity, namely the Bernoulli function®B = h+Ju-u+®. This
form of the total energy equation is

(pZ) +V-(puB) =—V-FR—v-FQ+v-(pv“5°V§[u-u]). (B.16)

In an ocean modelling context, it is rather strange to contemplate the energy
variable that is advected through the face of a model grid, B , to be different to
the energy variable that is changed in the grid cell, Z . Hence this form of the
total energy equation has not proved popular.

A third way of expressing the total energy equation (B.15) is to write the
left-hand side in terms of only the Bernoulli function B = h+1u-u+® so that
the prognostic equation for the Bernoulli function is

pB) +V-(puB)=pdB/dt =P -V-F* —V.FQ +V-(pv'*Vilu-ul]. (B.17)
t t 2

When the flow is steady, and in particular, when the pressure field is time
invariant at every point in space, this Bernoulli form of the total energy equation
has the desirable property that B is conserved following the fluid motion in the
absence of radiative, boundary and molecular fluxes. Subject to this steady-state
assumption, the Bernoulli function B possesses the “potential” property. The
negative aspect of this B evolution equation (B.17) is that in the more general
situation where the flow is unsteady, the presence of the F, term means that the
Bernoulli function does not behave as a conservative variable because the right-
hand side of (B.17) is not the divergence of a flux. In this general non-steady
situation B is “isobaric conservative” but is not a “conservative” variable nor
does it posses the “potential” property.

Noting that the total energy Z is related to the Bernoulli function by
F =B —-(p+R)/p and even if we take the whole ocean to be in a steady state
so that B has the “potential” property, it is clear that Z does not have the
“potential” property in this situation. That is, if a seawater parcel moves from
say 2000 dbar to O dbar without exchange of material or heat with its
surroundings and with P =0 everywhere, then B remains constant while the
parcel’s total energy £ changes by the difference in the quantity — (p+£)) / P
between the two locations. Hence we conclude that even in a steady ocean T
does not possess the “potential” property. This means that total energy T is
useless as far as being a marker of fluid flow.

When the viscous production term V~(vaiS°V%[u-u]) in the above
equations is integrated over the ocean volume, the contribution from the sea
surface is the power input by the wind stress 7, namely the area integral of

surf surf

T-u where uw” is the surface velocity of the ocean.

Obtaining the First Law of Thermodynamics by subtraction

The evolution equation (B.12) for the sum of kinetic and gravitational potential
energies is now subtracted from the total energy conservation equation (B.15)

giving
(pu) +V-(puu)= pdu/dt =—(p+F)V-u =V-F* =V-F + pe. (B.18)

Using the continuity equation in the form pdv/d¢ =V-u and the Fundamental
Thermodynamic Relation (B.6), this equation can be written as
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A dP du dv dn s,
——v—| = —+(p+h)— | = T +t)—+ u—=
p[dt th] p(dr (p O)dt] p((o Fa ”dt) . (B19)

= —-V-F*-V-F%+ pe

which is the First Law of Thermodynamics.

The corresponding evolution equation for Absolute Salinity is (Eqn.
(A.21.8))

pddi;* = (pS,), + V-(puS,) = ~V-F + pS™, (A.21.8)

where F® is the molecular flux of salt and p S % is the non-conservative source
of Absolute Salinity due to the remineralization of particulate matter which we
are going to ignore in this course. Hence, in this course we take the salt
evolution equation to be

ds
(pSA),+V'(P“SA) = pd—tA =-V-F® |, approximate (A.21.8a)

For many purposes in oceanography the exact dependence of the molecular
fluxes of heat and salt on the gradients of Absolute Salinity, temperature and
pressure is unimportant, nevertheless, Eqns. (B.23) - (B.27) below list these
molecular fluxes in terms of the spatial gradients of these quantities.

At first sight Eqn. (B.19) has little to recommend it; there is a non-
conservative source term pe on the right-hand side and even more worryingly,
the left-hand side is not p times the material derivative of any quantity as is
required of a conservation equation of a conservative variable. It is this aspect of
the left-hand side of the First Law of Thermodynamics, namely the presence of
the —dP/ds term that has scared oceanographers and held up thermodynamic
progress for a century.

In summary, the approach used here to develop the First Law of
Thermodynamics seems rather convoluted in that the conservation equation for
total energy is first formed, and then the evolution equations for kinetic and
gravitational potential energies are subtracted. ~Moreover, the molecular,
radiative and boundary fluxes were included into the total energy conservation
equation as separate deliberate flux divergences, rather than coming from an
underlying basic conservation equation. This approach is adopted for the
following reasons. First this approach ensures that the molecular, radiative and
boundary fluxes do enter the total energy conservation equation (B.15) as the
divergence of fluxes so that the total energy £ = u + Ju-u+ @ is guaranteed to
be a conservative variable. This is essential. Second, it is rather unclear how one
would otherwise arrive at the molecular fluxes of heat and salt on the right-hand
side of the First Law of Thermodynamics since the direct approach which was
attempted involved the poorly defined (and obnoxious) “rate of heating” d¢q/dt
and did not lead us to the First Law.
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Expressions for the molecular fluxes of heat and salt

The molecular fluxes of salt and heat, F° and F°, are now written in the
general matrix form in terms of the thermodynamic “forces” V(—,u/ T ) and
V(l/ T ) as
FS = AV(-u/T) + BV(YT), (B.21)
F¢ = BY(-u/T) + CV(1T), (B.22)

where 4, B and C are three independent coefficients. The equality of the off-
diagonal diffusion coefficients, B, results from the Onsager (1931a,b) reciprocity
relation. When these fluxes are substituted into the First Law of
Thermodynamics Eqn. (B.19) and this is written as an evolution equation for
entropy, the Second Law constraint that the entropy production must be
positive requires that 4 > 0 and that C > BZ/A.

The part of the salt flux that is proportional to —VS§, is traditionally written
as —pk°VS , implying that 4 = pk® T/ K, - The molecular fluxes of salt and
heat, F° and F?, can now be written in terms of the gradients of Absolute
Salinity, temperature and pressure in the convenient forms

N
F = —pk’| s, + Heyp| - [PET(H) B gy, (B.23)
s\ ps, \T ). 17
2 Bu Bu
FQ = _Lz C_B_ VT _,__SSAFS = _pckTVT-i-—SSAFS, (B.24)
T 4 pk°T b pk°T

where the fact that C > B2/ A has been used to write the regular diffusion of
heat down the temperature gradient as — pcka VT where k is the positive
molecular diffusivity of temperature. These expressions involve the (strictly
positive) molecular diffusivities of temperature and salinity (i’ and &°) and
the single cross-diffusion parameter B. The other parameters in these
equations follow directly from the Gibbs function of seawater.

It is common to introduce a “reduced heat flux” by reducing the molecular
flux of heat by ah/asA\T F° = (u - T‘LLT)FS , being the flux of enthalpy due to
the molecular flux of salt. This prompts the introduction of a revised cross-
diffusion coefficient defined by

Sm3
B =g+ PET (EJ , (B.25)
Mg, ),
and in terms of this cross-diffusion coefficient Eqns. (B.23) and (B.24) can be
written as
u B
FS = —ka[VSA+—PVPJ - VT, (B.26)
Sa
and
Bu
FQ— (u—Tu,)FS = —pc k' VT + —AFS
(w=Tuy) pe, T

B, (B.27)
u
—pe K'VT - —falys + Heyp|

P T 1

A

where K, defined by pcpKT = pcka +B’2/ (AT 2), is a revised molecular
diffusivity of temperature.

The term in (B.26) that is proportional to the pressure gradient VP
represents “barodiffusion” as it causes a flux of salt down the gradient of
pressure. The last term in (B.26) is a flux of salt due to the gradient of in situ
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temperature and is called the Soret effect, while the last term in the second line
of Eqn. (B.27) is called the Dufour effect.

If the ocean were in thermodynamic equilibrium, its temperature would be

the same everywhere, as would the chemical potentials of water and of each
dissolved species; see Eqns. (B.21) and (B.22). Such a situation with FQ = F®* =0
would have entropy and the concentrations of each species being functions of
pressure. Turbulent mixing acts very differently, tending to homogenize the

concentration of each species and to make entropy constant, but in the process
causing gradients in temperature and in the chemical potentials as functions of
pressure. That is, turbulent mixing acts to maintain a non-equilibrium state.
This difference between the roles of molecular versus turbulent mixing results
from the symmetry breaking role of the gravity field; for example, in a
laboratory without gravity, turbulent and molecular mixing would have
indistinguishable effects.

Reference states

The Gibbs function g(S aols p) contains four arbitrary constants that cannot be
determined by any set of thermodynamic measurements. These arbitrary
constants mean that the Gibbs function is unknown and unknowable up to the
arbitrary function of temperature and Absolute Salinity (where 7, is the Celsius
zero point, 273.15 K)

a,+ a,(T,+1) + a8, +a, (T, +1)S, . (2.6.2)

This is equivalent to saying that both enthalpy / and entropy 1 are unknown
and unknowable up to linear functions of Absolute Salinity; enthalpy is
unknown up to @, + a; S, and entropy is unknown up to —a, - a, S, .

There are no known or conceivable experiments that could possibly
constrain these four arbitrary numbers. By the same token, there can be no
conceivable consequences to any arbitrary choice that is made for these four
numbers.

25



Thermodynamics Lectures, 2017 26

Now we can play

So we’'ve spent 25 pages of lecture notes deriving the Fundamental
Thermodynamic Relation and the First Law of Thermodynamics. Now it’s time
to play. Here is a revision of our underlying equations.

The Continuity Equation is

p,+V-(pu)=01. (A21.2)

The Fundamental Thermodynamic Relation is

du+(p+PB)dv = di—vdP = (7T, +t)dn + pds, |. (A.7.1)

The First Law of Thermodynamics is

dh dp du dv dn  ds,
——v—| = —+|p+E)— | = T+t)—+ u—=
p[dt th] p(dr (p O)dt] p((o Fa ”dt) . (B.19)

= —V-F*-V-F%+ pe

The conservation equation of Absolute Salinity is

ds
(pSA),+V'(P“SA) = pd—tA =-V-F® |, approximate (A.21.8a)

The definition of the Gibbs function

g(S,.T.P)=g=h-Tn =u+Pv—-Tn|. (definition_of_g)

We will concentrate on the parts of these equations that involve enthalpy #
(rather than internal energy u), that is, we will concentrate on the red parts of
the equations.

The above equations have several variables appearing in more than one
equation (especially when you realize that p=v"'), but the Gibbs function
appears in just the last equation, so why bother with it? The answer is that it is
the Gibbs function that defines the fluid. That is, we have an internationally
defined and accepted algorithm for g(S Aol p), and all the other thermodynamic
variables are actually not separate quantities but are actually various derivatives
of the Gibbs function.

Enthalpy is “isobaric conservative”

There is an important consequence of the First Law that is really easy to derive,
and its too beautiful to delay discussing, so we will do so right away. The First
Law of Thermodynamics can be put in divergence form by invoking the
continuity equation, giving

(ph), + V-(puh) - % = -V.-FR-V.FQ 4 pe . (A.13.2)
An important consequence of Eqn. (A.13.2) is that when two finite sized parcels

of seawater are mixed at constant pressure and under ideal conditions, the total
amount of enthalpy is conserved. To see this, integrate over the volume that

encompasses both fluid parcels while assuming there to be no radiative,
boundary or molecular fluxes across the boundary of this control volume. This
control volume may change with time as the fluid moves (at constant pressure),
mixes and contracts. The dissipation of kinetic energy by viscous friction pe is
commonly ignored during such mixing processes but in fact the dissipation term
does cause a small increase in the enthalpy of the mixture with respect to that of
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the two original parcels, and it is easy to include it. Apart from this non-
conservative source term, pe, under these assumptions Eqn. (A.13.2) reduces to
the statement that the volume integrated amount of p#k is the same for the two
initial fluid parcels as for the final mixed parcel, that is, the total amount of
enthalpy is unchanged.

This result of non-equilibrium thermodynamics (it is non-equilibrium
because of the finite size of the parcels and the finite property differences) has
been known since the days of Gibbs in the nineteenth century, and it is of the
utmost importance in oceanography. The fact that enthalpy is conserved when
fluid parcels mix at constant pressure is the central result upon which all of our
understanding of “heat fluxes” and of “heat content” in the ocean now rests.

As important as this result is, it does not follow that enthalpy is the best
variable to represent “heat content” in the ocean. Enthalpy is actually a very
poor representation of “heat content” in the ocean because it does not posses the
“potential” property. It will be seen that potential enthalpy #° (referenced to
zero sea pressure) is the best thermodynamic variable to represent “heat
content” in the ocean.
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Review of the past couple of lectures

The left-hand side of the First Law of Thermodynamics is identical to one of the
three parts of the Fundamental Thermodynamic Relation,

dh  dP du dv dn ds,
——v— /| =pl—+(p+B)— | = p| (T, +t) ="+ u—2
p[dz vdr] p[dr (» O)dtj p((o )dt udr]

but the right-hand side of the First Law of Thermodynamics contains the

(B.6)

~

physical processes that affect the “heat-like” variables u, # and 7 that appear on
the left-hand side. These physical processes are minus the divergences of the
fluxes of heat by radiation and by molecular diffusion plus the dissipation of
kinetic energy into “heat”.

We learnt that the way to derive the First Law of Thermodynamics is a bit
torturous. One must first develop the conservation equation for Total Energy

F = u+%u-u+CI> and then one subtracts off the evolution equation for

1
2

way of deriving the First Law of Thermodynamics even for a pure substance

u-u+®. What is left is the First Law of Thermodynamics. This is the only

(like freshwater) and it is especially obvious that this is the only viable route
when the fluid is not a pure substance (e.g. seawater which is pure water plus
sea-salt in solution).

We then looked at the form of the molecular fluxes of salt and heat

EZ] i B ﬂ[zgﬁ/f)] (B.21, B.22)

and examined the constraints on 4, B and C required to ensure that entropy is
never destroyed.

We then looked at the First Law of Thermodynamics, namely

A dP du dv dn s,
——v—| = —+|p+E)— | = T+t)—+ u—=
p[dt th] p(dr (p O)dt] p((o Fa ”dt) . (B19)

= —V-F*-V-F%+ pe

and were able to show that when turbulent mixing occurs between two fluid
parcels, enthalpy is conserved (apart from the heating caused by any dissipation
of kinetic energy pe ). This is true because for fluid parcels to mix they have to
be at the same physical location and therefore at the same pressure. This
“isobaric conservative” nature of enthalpy is the most important consequence of
the First Law of Thermodynamics for a turbulent fluid such as the atmosphere
and the ocean. However enthalpy has another drawback that makes it an
undesirable variable; it varies quite strongly with pressure, even for an adiabatic
and isohaline change in pressure. We will find that a new variable that is based
on enthalpy, namely potential enthalpy, is a much better variable for
representing the “heat content” per unit mass of seawater.
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“isohaline”, “adiabatic” and “isentropic”; reversible and irreversible
processes

The adjective “isohaline” means “at constant salinity” and describes a
process in which the Absolute Salinity of a fluid parcel is constant because
~ V-F® is zero.

The adjective “adiabatic” is traditionally taken to mean a process during
which there is no exchange of heat between the environment and the fluid parcel
one is considering. However, with this definition of “adiabatic” it is still
possible for the entropy 7, of a fluid parcel to change during an isohaline and
adiabatic process (see Eqn. (B.19)). This is because the dissipation of mechanical
energy £ causes an increase in 77 .

A dP du dv dn s,
——v—| = —+|p+E)— | = T+t)—+ u—=
p[dt th] p(dr (p O)dt] p((o Fa ”dt) . (B19)

= —V-F*-V-F%+ pe

While the dissipation of mechanical energy is a small term whose influence is
routinely neglected in the First Law of Thermodynamics in oceanography, it
seems advisable to modify the meaning of the word “adiabatic” in
oceanography so that our use of the word more accurately reflects the properties
we normally associate with an adiabatic process. Accordingly the word
“adiabatic” in oceanography is taken to describe a process occurring without
exchange of heat and also without the internal dissipation of mechanical energy.
With this definition of “adiabatic”, a process that is both isohaline and adiabatic
does imply that the entropy 7 is constant, that is, it is an “isentropic” process.

With this definition of “adiabatic”, an “adiabatic and isohaline” process, is
identical to an “isentropic and isohaline” process. Often such a process is simply
described as being simply “isentropic”. However, it is possible to have an
isentropic process in which there are changes in both temperature and in
Absolute Salinity in just the right proportion to achieve no change in entropy.
Hence one needs to say “adiabatic and isohaline” or “isentropic and isohaline”;
two constancies are required, not one.

A reversible thermodynamic process must entail no change in entropy or
salinity during the process, and no dissipation of mechanical energy. That is, a
reversible thermodynamic process must have F* = FX = F¢=¢ =0. A slow
change in the pressure of a fluid parcel may occur during a reversible process
while FS = FR=F=¢=0. If any of FS, F?, FQ or ¢ are non-zero, the
processes is irreversible. The most common reversible processes is an adiabatic
and isohaline change of pressure such as occurs during the vertical heaving
motion of an internal gravity wave. During such motion both the entropy and
the Absolute Salinity of the parcel are constant. Molecular diffusion of heat and
salt are examples of irreversible processes, as are turbulent mixing processes.
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potential temperature of seawater

Potential temperature 6 is the temperature that a fluid parcel would have if its
pressure were changed to a fixed reference pressure p, in an isentropic and
isohaline (and hence, reversible) manner. For a fluid parcel (S b p) at pressure
p the following thought experiment is conducted. You wrap the fluid parcel in
an insulating plastic bag and then you slowly move it to a different location
where the pressure is p . The parcel experiences the changing pressure during
this movement. When the parcel arrives at p. you put a thermometer into the
parcel and measure its in situ temperature at p, . This temperature is called the
parcel’s potential temperature.

Potential temperature referred to reference pressure p, is often written as
the pressure integral of the adiabatic lapse rate (Fofonoff (1962), (1985))

r
6 =6(S,.t,p.p,) =1+ I r(S,.6[Sy.t.p.0 )0 P, (3.1.1)

where T'= at/aP‘S . is the rate at which in situ temperature changes with
pressure at fixed entropy and salinity.

The algorithm that is used in the TEOS-10 code to evaluate potential
temperature 6 equates the specific entropies of two seawater parcels, one before
and the other after the isentropic and isohaline pressure change. In this way, 8
is evaluated using a Newton-Raphson type iterative solution technique to solve
the following equation for &

n(S,.0.p,) = n(Sy.t.p).  or  —g:(Sx.6,p0,) = — g7 (Sastip).  (312)
This relation is formally equivalent to Eqn. (3.1.1).

In equating the specific entropies of the seawater parcel at the two different
pressures in Eqn. (3.1.2) we are exploiting the fact that in the thought experiment
the slow change in pressure is done isentropically.

Consider now two seawater parcels with the same Absolute Salinities but at
different in situ temperatures and different pressures. If these two seawater
parcels have the same value of specific entropy then the two seawater parcels
must also have the same value of potential temperature 6 at p, (see Eqn. (3.1.2)
where the right-hand side is the same for the two parcels).
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potential enthalpy

Potential enthalpy /4’ is the enthalpy that a fluid parcel would have if its
pressure were changed to a fixed reference pressure p, in an isentropic and
isohaline manner. Because heat fluxes into and out of the ocean occur mostly
near the sea surface, the reference pressure for potential enthalpy is almost
always taken to be p, = 0 dbar (that is, at zero sea pressure). The thought
process involved with potential enthalpy is the same as for potential
temperature, namely the parcel is enclosed in an insulating plastic bag and its
pressure is slowly change to p . At this new pressure the parcel’s enthalpy is
calculated, and this is called potential enthalpy.

Now considering specific enthalpy to be a function of entropy (rather than
of temperature ¢), that is, taking h= h(S T p), the Fundamental
Thermodynamic Relation (FTR, Eqn. (A.7.1)) becomes

h,dn + hy, dS, + h,dP —vdP = (T, +1)dn + pds, . (A.11.4)

For an isentropic and isohaline process during which dn =dS, =0, this equation
reduces to &, = on/ ap{s = v which allows us to simplify Eqn. (A.11.4) to
ATl

hydn + hg dS, = (T,+t)dn +pdS,  while ai;/ap[w —v, (Al1l4)

Also, from the previous section we know that if S A and 1 are constant, then so
is potential temperature 6 . Hence we also know that

ah/aﬂSA’e =v. (A.11.6)
Since we also know that g, =v we can note that

ah/aP|SA,9 =y = ag/aP‘SA’T . (v=g,= fzp = ﬁp = fzp)

Potential enthalpy 4’ can be expressed as the pressure integral of specific
volume as

H(S,.t.p) = h(S,.6.0) = i°(S,.8) = h(S,.t.p) - }f V(SA’Q(SA’t’p’p,)’p/) ar

B
P

= h(S,.t.p) - g v(S,.m.p") dP’
0 (3.2.1)

p
= h(S,.t.p) - | ¥(S,.0.p") aP’

0
P
= h(S,.t.p) - | 9(8,.0,p") aP’,

0
and we emphasize that the pressure integrals here must be done with respect to
pressure expressed in Pa rather than dbar. In this equation we have introduced
the over-tilde, over-hat etc. which we will use to indicate the functional
dependence of a variable; see the list of Nomenclature that has been distributed.
Note that in the first line of the above equation, specific volume v is a function
of (SA,t,p) while Q(SA,t,p,p’) (see Eqn. (3.1.1)) is the potential temperature of
parcel (S b p) with respect to the reference pressure p’.

In terms of the Gibbs function, potential enthalpy 4° is evaluated as

B (Su.t,p) =h(S,,0,0)= g(S4,6,0) —(T,+ 0)g;(S,,6,0). (3.2.2)
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Conservative Temperature

Conservative Temperature © is defined to be proportional to potential enthalpy,
O(S,.t.p) = 6(S,.0) = K(S,.t.p)/c" = i°(S,.0)/< (3.3.1)
where the value that is chosen for cg is motivated in terms of potential enthalpy
evaluated at an Absolute Salinity of S, =35u,,=35.16504 gkg™ and at
6 =25°C by
[1(S5025°C, 0) = h(S50, 0°C, 0) ]
(25 K)

~ 3991.867 95711963 Jkg'K™', (3.3.2)

noting that /(Sy,, 0 °C, Odbar) is zero according to the way the Gibbs function is
defined. We adopt the exact definition for cg to be the 15-digit value in (3.3.2),
so that

c) = 3991.867 95711963 Tkg 'K ™. (3.3.3)

The value of cg in Eqn. (3.3.3) is very close to the average value of the
specific heat capacity ¢, at the sea surface of today’s global ocean. This value of
cg also causes the average value of #—0 at the sea surface to be very close to
zero. Since cg is simply a constant of proportionality between potential
enthalpy and Conservative Temperature, it is totally arbitrary.

The difference between potential temperature and Conservative
Temperature can be as large as § — ® = —1.4°C but is more typically no more
than +0.1°C. To put a temperature difference of 0.1°C in context, this is the
typical difference between in situ and potential temperatures for a pressure
difference of 1000 dbar, and it is approximately 40 times as large as the typical
differences between f,, and #g in the ocean.
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potential temperature of a perfect gas

An ideal gas obeys

Pv = RT (Perfect_Gas_A)
where R is the universal gas constant R~287Jkg™' K™'. For an adiabatic
change in pressure (this also being an isentropic processes) the Fundamental
Thermodynamic Relation tells us that di =vdP. For an ideal gas, specific
enthalpy /4 is equal to ¢3°T where ¢;® =R = 1004.5] kg™ K™ for a diatomic
gas. Hence for a perfect gas we have

ciasdT = ZRdT = R—PTdP or d(InT) = 2d(InP). (Perfect_Gas_B)

Performing the adiabatic change in pressure from P to F, gives

(! ! ,+6 (B
Id(ln Ty =2 J.d( In PY or - = |2 (Perfect_Gas_C)
) ) T, +1 P

specific entropy of a perfect gas

Now consider a more general situation where the parcel of perfect gas does
exchange heat with its surroundings, then the Fundamental Thermodynamic
Relation

dh—vdP = (T,+t)dn (A7.1)
shows that
dn = cfj‘STd—T _rY¥ _ cEd(In[ Ty +1]) = 2¢5°d(In P)
o T? P (Perfect_Gas_D)
= ¢=d(In[ T, +6)).

Hence for a perfect gas, specific entropy is simply proportional to the natural
logarithm of potential temperature (absolute potential temperature),

n = ci"‘s ln[To +9] + constant

Perfect_Gas_E)
= ¢ In[1+6/T, ], (

where the constant is defined so that entropy is zero at a Celsius temperature of
0°C (see Eqn. (J.6) and (J.7) of IOC et al. (2010)).

The enthalpy of a perfect gas (e.g. dry air) is also defined to be zero at a
Celsius temperature of 0°C, so the potential enthalpy of a perfect gas is
" =c;°0 and if a “conservative temperature of a perfect gas” were to be
defined, then it would be equal to potential temperature 6 .

An approximate specific entropy of seawater
One wonders how accurate a correspondingly simple logarithm expression
would be for the entropy of seawater, defined by either cz ln[TO +9:| + constant
or cg ln[TO +®:| + constant . The constants can be chosen so that it makes the
estimate of entropy zero if 6 =0°C or ©® =0°C in the two cases respectively
since entropy is defined to be zero for Standard Seawater (S, = Sy, ) at these
temperatures. Hence we try the two approximations

cg ln[l +0/ T, :I , (approx_entropy_pt)
and

cg ln[1+ e/ To:l . (approx_entropy_CT)
The figures below show the difference between these approximate expressions
and the specific entropy of seawater, and each plot has been divided by

ﬁ(35.16504 gk, 25°c)
25K

i.e. essentially 14 J kg 'K™) in order to express the error in the approximation
y g p pPp

13.983265450613318 J kg 'K = , (scaling_factor)
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in temperature units.
It is seen that the expression involving Conservative Temperature,
cg ln[1+®/ To:l, is a better approximation to entropy than is the one involving
potential temperature, cg ln[1+9/ TO:I (Note that for seawater, cg is

approximately four times as large as the specific heat capacity of air, ¢;*).

Can we understand the relative performance of these two approximate
expressions? Starting from the Fundamental Thermodynamic Relationship

dh—vdP = (T,+¢)dn + udS, , (A7.1)

we consider this differential relationship at the fixed pressure of p =0 dbar
where the in situ temperature is equal to the potential temperature 6, so the FTR

becomes

¢9d® = (T,+6)dn + u(S,.6,0)ds, , (d_entropy_1)

or

0 S,.6,0
n = (T%G)de - u((TAiJre))dSA’ (d_entropy_2)
0 0
or
T.+0 S,,0,0

dn = ((](’:)-:-9)) c?) d(ln[To+®]) - % N (d_entropy_3)

This is the relevant differential expression for entropy in terms of ©.

Now to develop the corresponding expression in terms of 8 we go back to
the FTR, Eqn. (A.7.1), evaluated at p =0 dbar in the form

¢,(85,,0,0)d0 + hg (5,,6,0)dS, = (T,+6)dn +u(S,.0,0)dS,. (d_entropy_4)

Since h= g —Tg, it follows that hSA =g, ~ TgSAT = u—Tu, so we can rewrite

this last equation as

dn = c,(8,.0.0)d(n[ T, +6 ) - u,(5,.6,0)ds, | (d_entropy_5)

Our approximate straw-men expressions for entropy, namely cg ln[l +0/ TO:I
and cg ln[1+ e/ TO] , amount to ignoring the dependence of entropy on Absolute
Salinity in the above boxed equations, as well as

(i) in the case of 6, approximating ¢, (SA,G,O) as ¢?, and

(ii) in the case of ©®, approximating (TO + @) / <T0 + 9{ by unity.

The specific heat capacity c,(S,,6,0) varies by 5.5% in the ocean whereas the
ratio (TO+®)/ <To +9) varies by no more than 0.67%, and this goes some way
towards explaining why the approximate expression n = cg ln[1+®/ TO]
outperforms cg ln[1+ 6/ To:l by a factor of about 15.
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The “conservative” property

A thermodynamic variable C is said to be “conservative” if its evolution
equation (that is, its prognostic equation) has the form

(pC),+V-(puC) = p% = -V-F". (A.8.1)
For such a “conservative” property, in the absence of fluxes F® at the boundary
of a control volume, the total amount of C-stuff is constant inside the control
volume. In the special case when the material derivative of a property is zero
(that is, the middle part and the right-hand side of Eqn. (A.8.1) are zero) the
property is said to be “materially conserved”.

The only three quantities that can be regarded as 100% conservative in the
ocean are (1) mass [equivalent to taking C=1 and F® =0 in Eqn. (A.8.1), giving
the continuity equation, which is the equation representing the conservation of
mass], (2) total energy Z'=u+lu-u+® (see Eqn. (B.15)), and (3) Preformed
Salinity S,.. Conservative Temperature © (or equivalently, potential enthalpy
h°) is not completely conservative, but we will find that the error in assuming it
to be conservative is negligible. Because we are ignoring the non-conservative
source term of Absolute Salinity in this course, we may also take Absolute
Salinity to be conservative (as we have done in going from Eqn. (B.20) to Eqn.
(B.20a) above).

Other variables such as potential temperature 6, enthalpy #, internal
energy u, entropy 7, density p, potential density p°, specific volume v,
potential specific volume, v®, and the Bernoulli function &= h+lu-u+® (see
Eqn. (B.17)) are not conservative variables.

The “isobaric conservative” property

A different form of “conservation” attribute, namely “isobaric
conservation” occurs when the total amount of the quantity is conserved when
two fluid parcels are mixed at constant pressure without external input of heat
or matter. This “isobaric conservative” property is a very valuable attribute for
an oceanographic variable. Any “conservative” variable is also “isobaric
conservative”, thus the conservative variables listed above, namely mass, total
energy £ and Preformed Salinity S. are exactly “isobaric conservative”
variables, while Absolute Salinity §, is almost (but not exactly) “isobaric
conservative”.

In addition, the Bernoulli function B and specific enthalpy % are also
almost exactly “isobaric conservative”. The issue with the Bernoulli function in
this regard is the presence of the unsteady term P, while the issue with

enthalpy not being totally 100% “isobaric conservative” is the presence of the

dissipation of mechanical ener

Note that
while % is almost exactly “isobaric conservative”, it is not a “conservative”
variable.

Some variables that are not “isobaric conservative” include potential
temperature 6, internal energy u, entropy 77, density p, potential density p®,
specific volume v, and potential specific volume v°.
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The “potential” property

Any thermodynamic property of seawater that remains constant when a parcel
of seawater is moved from one pressure to another adiabatically, without
exchange of mass and without interior conversion between its turbulent kinetic
and internal energies, is said to possess the “potential” property, or in other
words, to be a “potential” variable. Prime examples of “potential” variables are
entropy 77, potential temperature 8 and potential density p®. Recall that the
constancy of entropy 7 can be seen from the First Law of Thermodynamics in
Eqn. (B.19);

dh dpP du dv dn ds
——v—| = p| —+(p+tP)— | = T +t)—+u—=
p(dz Vdrj p(dr (» O)dtj p[(o )dt udtj

= —V-F*-V-F?+ pe

(B.19)

since, with the right-hand side of Eqn. (B.19) being zero, and with no change in
Absolute Salinity, it follows that entropy is also constant. Any thermodynamic
property that is a function of only Absolute Salinity and entropy also remains
unchanged by this procedure and is said to possess the “potential” property.

Recall that in oceanography we now define the word “adiabatic” to describe
a process occurring without exchange of heat and also without the internal
dissipation of kinetic energy. With this definition of “adiabatic”, a process that
is both isohaline and adiabatic does imply that the entropy 7, potential
temperature @ and Conservative Temperature © are all constant.

Thermodynamic properties that posses the “potential” attribute include
potential temperature @, potential enthalpy 4°, Conservative Temperature ©,
potential density p® and potential specific volume v® (no matter what fixed
reference pressure is chosen). Some thermodynamic properties that do not
posses the potential property are temperature ¢, enthalpy 4, internal energy u,
specific volume v, density p, specific volume v, specific volume anomaly &,
total energy £ and the Bernoulli function B. From Eqn. (B.17) we notice that
in the absence of molecular fluxes the Bernoulli function B is constant
following the fluid flow only if the pressure field is steady; in general this is not
the case. The non-potential nature of  is explained in the discussion following
Eqn. (B.17) on page 22 of these lecture notes.
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Oceanographers analyze “water-masses” on this S, —© diagram. The salinity
and temperature variables on these axes should ideally be both “potential” and
“conservative” properties so that turbulent mixing processes can be accurately
visualized on such a diagram.

A “water mass” is defined to be a line (not necessarily a straight line) on
this S, —© diagram.

The figure below is of near-surface water from the global ocean. It is a bit of
a mess, with some regions being plotted on top of others, but some are distinct.
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Table A.9.1 The “potential”, “conservative”, “isobaric conservative” and
the functional nature, of various oceanographic variables

-;E; g 'é E function of (S,,z,p)?
Variable §. § E %
s (V1 /[ / X
S, X X v
x| x| x /
o |/ | X | X v
. |/ X | X v
X | X |/ /
om 7 WE We v/
LI X | x| X /
B X | X v X
- X WL e X
PV X | X X 4
o 1/ x| X v
P X | X X 4
7n X | X X al

! The remineralization of organic matter changes S,.

2Taking £ and the effects of remineralization to be negligible.

3 Taking & and other terms of similar size to be negligible (see the discussion
following Eqn. (A.21.13)).

4 Taking the effects of remineralization to be negligible.

In Table A.9.1 various oceanographic variables are categorized according to
whether they posses the “potential” property, whether they are “conservative”
variables, whether they are “isobaric conservative”, and whether they are
functions of only (S,,z,p). Note that @ is the only variable that achieve four
“ticks” in this table, while Preformed Salinity S. has ticks in the first three
columns, but not in the last column since it is a function not only of (S,,?,p)
(since it also depends on the composition of seawater). Hence © is the most
“ideal” thermodynamic variable. If it were not for the non-conservation of
Absolute Salinity, it too would be an “ideal” thermodynamic variable, but in this
sense, Preformed Salinity is superior to Absolute Salinity. Conservative
Temperature © and Preformed Salinity S. are the only two variables in this
table to be both “potential” and “conservative”. The last three rows of Table
A.9.1 are for potential density, p©, specific volume anomaly, &, and Neutral
Density y". We will discuss these variables later in the course.

In this course we are assuming that Absolute Salinity is 100% conservative
(hence the yellow highlighting in the table above). This is not strictly true. The
important thing is that we use Absolute Salinity and not Practical or Reference
Salinity in an ocean model and as the salinity argument to the expression for
density. The non-conservative source term of Absolute Salinity is small on a
timescale of less than a century.
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Proof that @ = 6(S,,77) and O=0(S,,0)

Consider changes occurring at the sea surface, (specifically at p =0 dbar) where
the temperature is the same as the potential temperature referenced to 0 dbar
and the increment of pressure dp is zero. Regarding specific enthalpy /# and
chemical potential u# to be functions of entropy 7 (in place of temperature ¢),
that is, considering the functional form of # and u to be h= h (S R p) and
u= /fL(S Tl p), it follows from the Fundamental Thermodynamic Relation (Eqn.
(A.7.1)) that

h,(S,.m.0)dn + izSA(SA,n,o) ds, = (7,+6)dn + a(s,.n.,0)ds,, (A.10.1)

which shows that specific entropy 7 is simply a function of Absolute Salinity
S, and potential temperature &, that is n = ﬁ(S A,O), with no separate
dependence on pressure. It follows that 8 = 8(S,,7).

Similarly, from the definition of potential enthalpy and Conservative
Temperature in Eqns. (3.2.1) and (3.3.1), at p =0 dbar it can be seen that the
Fundamental Thermodynamic Relation (A.7.1) implies

0_ 0 ~
i’ = ¢ de = (T,+6)dn + i(S,.6.0)ds, . (A.10.2)
This shows that Conservative Temperature is also simply a function of Absolute
Salinity and potential temperature, © = @(S A,O), with no separate dependence

on pressure. It then follows that ® may also be expressed as a function of only
S, and 77. It follows that © has the “potential” property.

So we see that the four variables §,,6,n and © are all “potential”
variables, they are all properties of a seawater parcel, they are all independent of
pressure (for adiabatic and isohaline pressure changes), and they are related to
each other in the sense that if you know any two of them, you know the other
two. Absolute Salinity S, has a clear meaning and is different in character to
the other three variables 6,17 and © which are very “temperature-like”
variables.

Various isobaric derivatives of specific enthalpy

We will not derive the following derivatives here, but here they are.

ai’/a”LA,p = (7,+1) (A.11.5a)
onfos,| =u. (A.11.5b)
; (7, +1)
he‘SA,P= ¢,(8,.6.0) (7, +6) = —(T,+1)g(S,.6.0). (A.11.9)
s, |, = H(Suotp) = (T4t (5,.60)
o (A.11.11)
- gSA(SA,t,p)—(T0+t)gTSA(SA,9,o).
A _(T+t)
olsvn ™ (7,76) (A.11.15)
; (To+1)
h = S A - S ,0,0
Sale,p H(Sast,p) (T0+9)ﬂ( A ) At
(Y—E)—I_t) . .
= gSA (SA,t,p) - (TO‘FH) gSA (SA,H,O).
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Differential relationships between 77, 6, © and S,
Taking specific enthalpy to be a function of potential temperature (rather than of

temperature ¢), that is, taking /= h (S x00, p), the fundamental thermodynamic
relation (A.7.1) becomes

iy + hg S, = (T,+t)dn+udS,  while aiz/aP]SAﬂ =v. (A.1L6)

Similarly, considering specific enthalpy to be a function of Conservative
Temperature (rather than of temperature ¢), that is, taking 4 =4 (S 20, p), the
fundamental thermodynamic relation (A.7.1) becomes

hod® + hg dS, = (T,+1)dn + udS, while  9h/oP
e} SA9A 0 A

=v. (A11.12)
)

Using these forms of the Fundamental Thermodynamic Relation, together with
the four boxed equations for the partial derivative of enthalpy (A.11.9),
(A.11.11), (A.11.15) and (A.11.18), we find

(7, +1)

(Te)antilp)as, = g

e, (0) a6 + [1(p) - (1,0}, (0) s,
(A.12.1)

= (TO+9) c)dO + [u(p)— ((;i):;))u(o)]dSA.

The quantity u(p)dS, is now subtracted from each of these three expressions
and the whole equation is then multiplied by (7, +8)/(T,+1) obtaining

(T,+6)dn = ¢,(0)d6 — (T,+6) u; (0) dS, = ) dO—p(0)dS, .  (A122)

From this follows all the following partial derivatives between 77, 8, ©® and §,,

®9|SA:cp (S5.6.0)/ch, ®SA‘9:[,U(SA:0,O)— (Ty+0) tr (S5.0.0) ]/, (A123)
0,|, = (T +0)/c;. 0y, | =u(5,.60.0)/ch, (A.12.4)
9,7\SA =(T,+6)/c,(5,.6.0), 65, L] = (1, +0) 117 (S4.6.0)/c, (S4.6.0), (A.12.5)

Bels, = ¢, Jc,(S4,6,0), 9SA\®:_[ﬂ(SA,e,o)—(T0+9);LT(SA,a,o)]/cp(sA,e,o), (A.12.6)
776'|SA =6 (SA’e’O)/(% +6), USA‘QZ —Hr (SAaeao): (A.12.7)

77@|5A: 2/(76+9)a USA‘GZ ~1(Sx.6,0)/(T; +6). (4.12.8)
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The First Law of Thermodynamics in terms of 6, n and ©

Here we repeat the First Law of Thermodynamics

dh  dP du dv dn ds,
——v—| = —+(p+EB)— | = I +t)—+ u—=
p(dz dej p(dr (» O)dtj p((o Va udtJ . (B.19)

= V- F*-V-F+ pe

We wish to interpret this statement as a conservation statement for a “potential”
variable, since this is how ocean models treat their heat-like variable, which to
date has been potential temperature 6 . None of enthalpy #, internal energy u
or specific volume v are “potential” variables. Rather, these variables change
simply due to a change in pressure even in the absence of heat or salt fluxes.
The “heat-like” variables that are “potential” variables are entropy 1, potential
temperature 6, and Conservative Temperature ©.

The First Law of Thermodynamics, Eqn. (B.19), can be written as an
evolution equation for entropy as

ds
p[(T()+t)i—?+ud—tA]=—V-FR—V-FQ+p£. (A.13.3)

The First Law of Thermodynamics can also be written in terms of potential
temperature @ (with respect to reference pressure p =0) by taking
h = ft(SA, 0, p) and using Eqns. (A.11.9) and (A.11.11) as

T d
p(((r: :(;)) c/,(O)j—? + [#(P) - (7, + z)uT(O)} dStA J =-V-F*-V.F+pe, (A.134)

while in terms of Conservative Temperature ©, the First Law of
Thermodynamics is (using s = h(SA, 0, p) and Eqns. (A.11.15) and (A.11.18))

(7,+1) ,de (7, +1) ds, | . .
p[(To+9)c”E+ “(p)_(me)“(o) q | T VE SV pes (A135)

A quick ranking of these three variables, 77, € and ©, from the viewpoint
of the amount of their non-conservation, can be gleaned by examining the range
of the red terms (at fixed pressure) that multiply the material derivatives on the
left-hand sides of the above Eqns. (A.13.3), (A.13.4) and (A.13.5).

Why are we able to settle for examining the variation of these red terms
only at constant pressure? The ocean circulation may be viewed as a series of

adiabatic and isohaline movements of seawater parcels interrupted by a series of
isolated turbulent mixing events. During any of the adiabatic and isohaline
transport stages every “potential” property is constant, so each of the above
variables, entropy, potential temperature and Conservative Temperature are
100% ideal during these adiabatic and isohaline advection stages. The turbulent
mixing events occur at fixed pressure so the non-conservative production of say
entropy depends on the extent to which the coefficients (T0+t) and g in Eqn.
(A.13.3) vary at fixed pressure.

Similarly the non-conservative production of potential temperature
depends on the extent to which the coefficients c, (O)(TO + t) / (TO + 9) and
[,u(p)— (To + z)yT (0)] in Eqn. (A.13.4) vary at fixed pressure, while the non-
conservative production of Conservative Temperature depends on the extent to
which the coefficients (7, +¢)/(7, +6) and [y(p) —p(0)(Ty +1)/(Ty + 49)] in
Eqn. (A.13.5) vary at fixed pressure.

According to this way of looking at these equations we note that the
material derivative of entropy appears in Eqn. (A.13.3) multiplied by the
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absolute temperature (TOH) which varies by about 15% at the sea surface

((273.15+40)/273.15 = 1.146), the term that multiplies d@/ds in (A.13.4) is

dominated by the variations in the isobaric specific heat cp(S A pr) which is

mainly a function of S, and which varies by 5.5% at the sea surface (see

Figure 4 on page 1), while the material derivative of Conservative Temperature
d®/dt in Eqn. (A.13.5) is multiplied by the product of a constant “heat capacity”
0

¢, and the factor (TO +t) / (To +9) which varies very little in the ocean, especially

when one realizes that it is only the variation of this ratio at each pressure level

that is of concern. This factor is unity at the sea surface and is also very close to
unity in the deep ocean.

More quantitatively, the r.m.s. variation of these six terms is shown in the
following figure (from Graham, F. S. and T. J. McDougall, 2013: Quantifying the non-
conservative production of Conservative Temperature, potential temperature and entropy.
Journal of Physical Oceanography, 43, 838-862.). The variations of temperature in the
ocean are about five times as large as the variations of Absolute Salinity (in g/kg)
so if the horizontal axis of Fig (a) is divided by a factor of 5, the figures can be
compared numerically.

This figure shows that both the red terms in the potential temperature
version of the First Law contribute to non-conservation about equally (we will
find out why shortly). The non-constancy of the terms that multiply dS, /d¢ in
both the entropy and Conservative Temperature cases are very small compared
to the variation of the terms multiplying dn/ds and d@/ds respectively.

So the ranking of the variables can be seen simply by looking at Fig (b),
especially if we mentally move the dotted line (the line for 6 ) to the right by a
factor of two.
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Review of the last lecture

We discussed potential temperature, both for a real liquid (like seawater) and for
a perfect gas, where things are considerably simpler.

We then extended the “potential” concept to enthalpy, defining potential
enthalpy, and writing down the relationship between enthalpy and potential
enthalpy as a pressure integral of specific volume.

The “conservative” and “isobaric conservative” properties were defined,
and many oceanographic variables were categorized according to whether they
are “potential” variables, “conservative” variables, “isobaric conservative”
variables, and according to whether they are thermodynamic variables (that is,
variables that are a function of Absolute Salinity, temperature and pressure).

We proved that once you know the Absolute Salinity of a seawater parcel as
well as one of entropy, potential temperature or Conservative Temperature, then
you know the other two of these “temperature-like” variables.

We used the various partial derivatives of enthalpy to rewrite the First
Law of Thermodynamics

p[%—v%) = -V.FR-V.F?+ pe, (B.19)

as

p[(z)ﬂ)i—?w%j = —V-F*-V.-FQ+pe , (A.13.3)

p[((lr?:;))"p(o)i_?*[u(p)—(To+f)ur(0)]dthJ = —V-F'-V-Fl+pe, (A134)
(5,+1) od© (T+1) o\ ]ds R

p[(TO+9)cp$+[‘u(p)—(TO+9),U(0):| th] = —V-FR—V.F? + pe. (A.13,5)

We then estimated a rough ranking of entropy, potential temperature and
Conservative Temperature, in terms of how “conservative” these variables are.
We did this by simply seeing how much the partial derivative of enthalpy with
respect to these variables varied at fixed pressure in the ocean.
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Non-conservative production of entropy

Here the non-conservative nature of entropy will be quantified by considering
the mixing of a pair of seawater parcels at fixed pressure. The mixing is taken to
be complete so that the end state is a seawater parcel that is homogeneous in
Absolute Salinity and entropy. That is, we will be considering mixing to
completion by a turbulent mixing process.

Consider the mixing of two fluid parcels (parcels 1 and 2) that have initially
different temperatures and salinities. The mixing process occurs at pressure p.
Because the mixing is assumed to happen to completion, it follows that in the
final state Absolute Salinity, entropy and all the other properties are uniform.
Assuming that the mixing happens with a vanishingly small amount of
dissipation of kinetic energy, the £ term can be dropped from the First Law of
Thermodynamics, (A.13.1), this equation becoming

(ph)t + V~(puh) = -V.-FR —V.F?. at constant pressure (A.16.1)

Note that this equation has the “conservative” form and so % is conserved
during mixing at constant pressure, that is, / is “isobaric conservative”. In the
case we are considering of mixing the two seawater parcels, the system is closed
and there are no radiative, boundary or molecular heat fluxes coming through
the outside boundary so the integral over space and time of the right-hand side
of Eqn. (A.16.1) is zero. The surface integral of (pu#) through the boundary is
also zero because there is no flow through the boundary. Hence it is apparent
that the volume integral of p/ is the same at the final state as it is at the initial
state, that is, enthalpy is conserved. Hence during the mixing process the mass,
salt content and enthalpy are conserved, that is

m +m, =m, (A.16.2)
mS, +mS,,=mS,, (A.16.3)
m h +myh, = mh, (A.16.4)

while the non-conservative nature of entropy means that it obeys the equation,
m 1, +my1n, + mén = mn. (A.16.5)

Here S,,/ and 7 are the values of Absolute Salinity, enthalpy and entropy of
the final mixed fluid and ¢7 is the production of entropy, that is, the amount by
which entropy is not conserved during the mixing process. Entropy 7 is now
regarded as the functional form n =ﬁ(SA,h, p) and is expanded in a Taylor
series of S, and & about the values of S, and % of the mixed fluid, retaining
terms to second order in [S,,—S,,]=AS, and in [h,—h]=Ah. Then 7, and 7,
are evaluated and (A.16.4) and (A.16.5) used to find

Lmm,

2 {ﬁhh(Nl)2+ 21,5, ARAS, +17g ¢ (ASA)Z}. (A.16.6)

on =-

Shortly the production of entropy, Eqn. (A.16.6), will be quantified, but for
now we ask what constraints the Second Law of Thermodynamics might place
on the form of the Gibbs function g(S,,7,p) of seawater. The Second Law of
Thermodynamics tells us that the entropy excess 6n must not be negative for all
possible combinations of the differences in enthalpy and salinity between the
two fluid parcels. From (A.16.6) this requirement implies the following three
inequalities,

M, <0, ﬁSASA <0, (A.16.8)

2
(msA) <y Tl s, - (A.16.9)
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where the last requirement reflects the need for the discriminant of the quadratic
in (A.16.6) to be negative. Since entropy is already a first order derivative of the
Gibbs function, these constraints would seem to be three different constraints on
various third order derivatives of the Gibbs function. In fact, we will see that
they amount to only two rather well-known constraints on second order
derivatives of the Gibbs function.

From the fundamental thermodynamic relation (A.7.1) we find that (where
T is the absolute temperature, 7=T,+ ¢)

_ on 1
M,=—— == (A.16.10)
oh Sup T
_ an U
= =-L£ A.16.11
nSA aSA . T ( )

and from these relations the following expressions for the second order
derivatives of 1 can be found,

| eV
M = EY® SA””— o SA’p— —cpTz , (A.16.12)
o en | _alwr) 1 E]
Msyn = 8haSA|p YY) \S T, \T)) (A.16.13)
AP

| A-wr) A-w/r) on]
Ns,s, = osz| —9s, | oh | 95,

5P P AP

(A.16.14)

2
T c I\T '
p T

The last equation comes from regarding ﬁSA as ﬁSA = ﬁSA (SA,h[SA,t,p],p).

The constraint (A.16.8) that 7,, <0 simply requires (from (A.16.12)) that the
isobaric heat capacity ¢, is positive, or that g, < 0. Physically this constraint
simply means that when you apply heat to a fluid parcel it warms up, rather
than cools down.

The constraint (A.16.8) that ﬁSASA <0, requires (from (A.16.14)) that

2
73
5,5, = T C—K%j :| , (A.16.15)
T

p
that is, the second derivative of the Gibbs function with respect to Absolute
Salinity 8s,s, must exceed some negative number. The constraint (A.16.9) that
(f]hSA)2< ﬁhhﬁSASA requires that (substituting from (A.16.12), (A.16.13) and
(A.16.14))

85,5,
T3¢ »

and since the isobaric heat capacity must be positive, this requirement is that

0, (A.16.16)

8sps, > 0, and so is more demanding than (A.16.15).

We conclude that while there are the three requirements (A.16.8) to (A.16.9)
on the functional form of entropy n= ﬁ(S Aol p) in order to satisfy the
constraint of the Second Law of Thermodynamics that entropy be produced
when water parcels mix, these three constraints are satisfied by the following
two constraints on the form of the Gibbs function g(S,.z,p),

g < 0 (A.16.17)

and
85,5, > 0. (A.16.18)
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The Second Law of Thermodynamics does not impose any additional
requirement on the cross derivatives gg , nor on any third order derivatives of
the Gibbs function! (In any case, recall that gg  is completely arbitrary and
unknowable.)

The constraint g; ¢ > 0 can be understood by considering the molecular
diffusion of salt, which, in an isothermal ocean, is known to be directed down
the gradient of chemical potential ,u(S A p) / T (see Eqn. (B.21)). That is, the
leading term in the molecular flux of salt is proportional to —Vu. Expanding
—Vu in terms of gradients of Absolute Salinity, of temperature, and of pressure,
one finds that the first term is —ug VS, and in order to avoid an unstable
explosion of salt one must have Us, = gs,s,> 0. Hence the constraint (A.16.18)
amounts to the requirement that the molecular diffusivity of salt is positive. The
following figure shows that, indeed, 5,5, = Ms, >0.

The two constraints (A.16.17) and (A.16.18) on the Gibbs function are well
known in the thermodynamics literature. Landau and Lifshitz (1959) derive
them on the basis of the contribution of molecular fluxes of heat and salt to the
production of entropy (their equations 58.9 and 58.13). It is pleasing to obtain
the same constraints on the seawater Gibbs function from the above Non-
Equilibrium Thermodynamics approach of mixing fluid parcels since this
approach involves turbulent mixing which is the type of mixing that dominates
in the ocean; molecular diffusion has the complementary role of dissipating
tracer variance.

When the mixing process occurs at p =0, the expression (A.16.6) for the
production of entropy can be expressed in terms of Conservative Temperature
O (since O is simply proportional to 4 at p =0) as follows (now entropy is
taken to be the functional form 7 =7j(S,,0))

oy = — %m’;’?z {00 (A0) + 21165, AOAS, + 10,5, (AS, '} (A1622)

The maximum production occurs when parcels of equal mass are mixed so that

Tmym, m? = 1 and we adopt this value in what follows.
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To illustrate the magnitude of this non-conservation of entropy we first scale
entropy by a dimensional constant so that the resulting variable (“entropic
temperature”) has the value 25°C at (SA,®)=(SSO,25 °C) and then O is
subtracted. The result is contoured in §, — © space in Figure A.16.1.

The fact that the variable in Figure A.16.1 is not zero over the whole S, — ©
plane is because entropy is not a conservative variable. The non-conservative
production of entropy can be read off this figure by selecting two seawater
samples and mixing along the straight line between these parcels and then
reading off the production (in °C) of entropy from the figure. Taking the most
extreme situation with one parcel at (S,,0) = (O gkg™,0 OC) and the other at the
warmest and saltiest corner of the figure, the production of 7 on mixing parcels
of equal mass is approximately 0.9 °C..
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Figure A.16.1. Contours (in °C) of a variable which illustrates the
non-conservative production of entropy 7 in the ocean.

Since entropy can be expressed independently of pressure as a function of
only Absolute Salinity and Conservative Temperature 77 = 7j(S,,0), and since at
any pressure in the ocean both S, and ©® may quite accurately be considered
conservative variables, it is clear that the non-conservative production given by
(A.16.22) and illustrated in Figure A.16.1 is very nearly equivalent to the slightly
more accurate expression (A.16.6) which applies at any pressure. The only
discrepancy between the production of entropy calculated from (A.16.22) and
that from (A.16.6) is due to the very small non-conservative production of © at
pressures other than zero (as well as the fact that both expressions contain only
the second order terms in an infinite Taylor series). We have already seen that
the non-conservation of entropy is much larger than the non-conservation of
Conservative Temperature (by a factor of 1000 as it turns out).
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Non-conservative production of potential temperature

When fluid parcels undergo irreversible and complete mixing at constant
pressure, the thermodynamic quantities that are conserved during the mixing
process are mass, Absolute Salinity and enthalpy. As in the case of entropy, we
again consider two parcels being mixed without external input of heat or mass
and the three equations that represent the conservation of these quantities are
again Eqns. (A.16.2) — (A.16.4). The production of potential temperature during
the mixing process is given by

m 6, +m, 6,+mod = mo. (A.17.1)

Enthalpy in the functional form =/ (S £s0, p) is expanded in a Taylor series of
S, and @ about the values S, and @ of the mixed fluid, retaining terms to
second order in [S,,—-S,,]=AS, and in [6,-6]=A6. Then h and #h, are
evaluated and Eqns. (A.16.4) and (A.17.1) used to find

i j
80 = LTLTL] TO(A0) 42 A0AS, + (a5, ) 1 (A172)

2 2
m 0 0 0

The maximum production occurs when parcels of equal mass are mixed so that
Tmym, m? = 1. The “heat capacity” fze is not a strong function of @ but is a
stronger function of S, so the first term in the curly brackets in Eqn. (A.17.2) is
generally small compared with the second term. Also, the third term in Eqn.
(A.17.2) which causes the so-called “dilution heating”, is usually small
compared with the second term. A typical value of ﬁesA is approximately -5.4
Jkg” K'(gkg™")™" (see the dependence of isobaric heat capacity on S, in
Figure 4 on page 1) so that an approximate expression for the production of

potential temperature 99 is

00 ~ ~ - -
N = s, AS, [y = ~3.4x10 ‘(a5 /lgke™). (A17.3)
The same form of the non-conservative production terms in Eqn. (A.17.2)
also appears in the following turbulent evolution equation for potential
temperature, in both the epineutral and vertical diffusion terms (Graham and
McDougall, 2013). (See later for an explanation of the symbols that appear in
this thickness-weighted averaged equation.)
do 00

dr ot

+9V 0+ ég—f = 7.V,-(7.'KV,0) + (D6, ) +&/h,

n

h A ~ ﬁs A 4 ﬁss A 5

+ K| 2V 6.V 6+2—22V 6.V S, +-—22V 5 VS | (Al74)

h n n h n n h n n
0 0 0

hooa hyo . . h 2
+ D[%@ZH 2228, + =23, ) J .

o hy ok

Since potential temperature 6 = é(S +-©) can be expressed independently
of pressure as a function of only Absolute Salinity and Conservative
Temperature, and since during turbulent mixing both §, and © may be
considered approximately conservative variables (see section A.18 below), it is
clear that the non-conservative production given by (A.17.2) can be
approximated by the corresponding production of potential temperature that
would occur if the mixing had occurred at p = 0, namely

00 =

m

o €] 6
1% {—ﬁ@ (86)" +2—22 A0 AS, +—2% (ASA)z}, (A.17.5)
=} 6 6
6 6 %]
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where the exact proportionality between potential enthalpy and Conservative
Temperature hoscg(a has been exploited. The maximum production occurs
-2

when parcels of equal mass are mixed so that £m m, m™ =+ and we adopt this

value in what follows.

Equations (A.17.2) or (A.17.5) may be used to evaluate the non-conservative
production of potential temperature due to mixing a pair of fluid parcels across
a front at which there are known differences in salinity and temperature. The
temperature difference -0 is contoured in Figure A.17.1 and can be used to
illustrate Eqn. (A.17.5). &6 can be read off this figure by selecting two seawater
samples and mixing along the straight line between these parcels (along which
both Absolute Salinity and Conservative Temperature are conserved) and then
calculating the production (in °C) of @ from the contoured values of 8-0.
Taking the most extreme situation with one parcel at (S,,0)= (0 gkg™,0 °C)
and the other at the warmest and saltiest corner of Figure A.17.1, the non-
conservative production of # on mixing parcels of equal mass is approximately
-0.55°C . This is to be compared with the corresponding maximum production
of entropy, as discussed above in connection with Figure A.16.1, of
approximately 0.9 °C.

Figure A.17.1. Contours (in °C) of the difference between potential temperature
and Conservative Temperature §—©. This plot illustrates the non-conservative
production of potential temperature € in the ocean.

How NOT to quantify the error involved in using potential temperature

If Figure A.17.1 were to be used to quantify the errors in oceanographic practice
incurred by assuming that 6 is a conservative variable, one might select
property contrasts that were typical of a prominent oceanic front and decide that
because 06 is small at this one front, that the issue can be ignored. But the
observed properties in the ocean result from a large and indeterminate number
of such prior mixing events and the non-conservative production of &
accumulates during each of these mixing events, often in a sign-definite fashion.
How can we possibly estimate the error that is made by treating potential
temperature as a conservative variable during all of these unknowably many
past individual mixing events?
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How to quantify the error involved in using potential temperature

This seemingly difficult issue is partially resolved by considering what is
actually done in ocean models today. These models carry a temperature
conservation equation that does not have non-conservative source terms, so that
the model’s temperature variable is best interpreted as being ©. If an ocean
model is written with potential temperature 6 as the prognostic temperature
variable rather than Conservative Temperature ©, and is run with the same
constant value of the isobaric specific heat capacity cg , the neglect of the non-
conservative source terms that should appear in the prognostic equation for 6
means that such an ocean model incurs errors in the model output. These errors
will depend on the nature of the surface boundary condition; for flux boundary
conditions the errors are as shown in Figure A.17.1, because in this case the
model’s temperature variable is actually Conservative Temperature © but has
been interpreted and initialized incorrectly as potential temperature 6.

The contoured values of temperature difference in Figure A.17.1
encapsulate the accumulated non-conservative production that has occurred
during all the many mixing processes that have lead to the ocean’s present state.
The maximum such error for 7 is approximately -1.0 °C (from Figure A.16.1)
while for 8 the maximum error is approximately -1.8 °C (from Figure A.17.1).
From the curvature of the isolines on Figure A.17.1 it is clear that the non-
conservative production of € takes both positive and negative signs.

Here is an enlarged view of 6—-© on the §, —-© diagram, and also of the
error involved with using another previous suggestion for the “heat content” of
seawater, 0 c, (SA,G,p) / c?, .
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One percent of the data at the sea surface of the world ocean have values of
0—0 that lie outside a range that is 0.25 °C wide (see Figure A.13.1), implying
that this is the magnitude of the error incurred by ocean models when they treat
@ as a conservative quantity. To put a temperature difference of 0.25 °C in
context, this is the typical difference between in situ and potential temperatures
for a pressure difference of 2500 dbar, and it is approximately 100 times as large
as the typical differences between t,, and f, in the ocean.

Figure A.13.1. The difference §—0© (in °C) between potential temperature &
and Conservative Temperature © at the sea surface of the annually-averaged
atlas of Gouretski and Koltermann (2004).

The maximum value of the seasonal variation in |6—®‘ (in °C) at the sea surface
throughout the annual cycle of the hydrographic atlas of Gouretski and
Koltermann (2004).
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Review of the recent lectures

We examined the process of turbulent mixing and showed that in order for the
Second Law of Thermodynamics to be obeyed (and entropy to be always
produced), there are only two constraints on the form of the Gibbs function,

namely
gr <0 (A.16.17)

and
85,5, > 0. (A.16.18)

These constraints mean that (i) the fluid must increase its temperature when it is
heated, and (ii) the solute should not spontaneously “unmix”. These constraints
on the Gibbs function are well known from considerations of molecular fluxes.
It is encouraging that they emerge also from the turbulent mixing process, which
happens quite independently of the form of the molecular fluxes.

We considered the turbulent mixing of pairs of seawater parcels that had
finite amplitude differences of Absolute Salinity and of temperature. By
employing a Taylor series analysis, we were able to get an expression for the
non-conservative production of entropy and of potential temperature when the
parcels are mixed to uniformity.

We were able to illustrate the non-conservative production of entropy and
of potential temperature, when mixing occurs between pairs of fluid parcels, on
the following carefully-constructed diagrams.
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We then showed that these diagrams are the measure of the error involved
with assuming that entropy or potential temperature is conserved in the ocean.
Because of the unknowably many mixing events in the life-history of a seawater
parcel, these diagrams illustrate the sum of these non-conservative sources in
the past, over many different mixing events over the past 1000 years.
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Non-conservative production of specific volume

Specific volume is expressed as a function of Absolute Salinity §,, specific
enthalpy /% and pressure as v = \7(S ol p) and the same mixing process between
two fluid parcels is considered as in the previous appendices. Mass, salt and
enthalpy are conserved during the turbulent mixing process (Eqns. (A.16.2) -
(A.16.4)) while the non-conservative nature of specific volume means that it
obeys the equation,

mvy +m, vy, + mov=mv. (A.19.1)
Specific volume is expanded in a Taylor series of S, and / about the values of
S, and 4 of the mixed fluid at pressure p, retaining terms to second order in
[S\,—Su]=AS, and in [h,—h]|=Ah. Then v and v, are evaluated and
(A.19.1) is used to find

ov = _ 1M
27 2
m

{ Vo AR) 4 27,5 ARAS, +5 (ASA)Z}
(A.19.2)
m m,

- -4 {ﬁ®®(A®)2+ 2005 AOAS, +ig (ASA)Z}.

The non-conservative destruction of specific volume of Eqn. (A.19.2) is
illustrated in Figure A.19.1 for mixing at p = 0 dbar. The quantity contoured on
this figure is formed as follows. First the linear function of S, is found that is
equal  to specific ~ volume at (S, =0,0=0°C) and at
(S '\ =35.165 04gkg™, ©=0 °C). This linear function of S, is subtracted from v
and the result is scaled to equal exactly 25°C at
(SA =35.165 04gkg™, ©=25 °C). The variable that is contoured in Figure A.19.1
is the difference between this scaled linear combination of v and S§,, and
Conservative Temperature. This figure allows the non-conservative nature of
specific volume to be understood in temperature units. The mixing of extreme
fluid parcels on Figure A.19.1 causes the same decrease in specific volume as a
cooling of approximately 10 °C, which is approximately 4000 times larger than
the corresponding non-conservative production of © at 600dbar (from Figure
A.18.1).

Figure A.19.1. Contours (in °C) of a variable that is used to illustrate the non-
conservative production of specific volume at p = 0 dbar. The three points that
are forced to be zero are shown with black dots.

From Eqn. (A.19.2) it follows that specific volume is always destroyed by
VS 5 >0 and (vhS )< v v, and
Graham and McDougall (2013) have shown that these conditions are satlsfled

turbulent mixing processes if v, >0,

over the full TEOS-10 ranges of salinity, temperature and pressure by both the
full TEOS-10 Gibbs function g(S A p) and by the polynomial expression for
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specific volume \S(SA,G,p) of the Gibbs SeaWater (GSW) Oceanographic
Toolbox. Note that in contrast to the case of specific volume, the non-
conservation of density is not sign-definite. That is, while turbulent mixing

always destroys specific volume, it does not always produce density p = vL

Specific volume is the more appropriate variable to consider in this regard
because it is volume per unit mass, and mass (which is on the denominator of
specific volume v=7V/M) is a conservative quantity whereas volume is not. So
if one considers the non-conservative nature of density, p = v 1= M/V, then one
is actually enquiring about the non-conservation of the reciprocal of a non-
conservative quantity, namely the reciprocal of volume V' (since mass M is a
conservative quantity). This explains how (but not why) specific volume is
always destroyed by a turbulent mixing process while density is not always
produced non-conservatively by the same turbulent mixing process. I do not
know if this is a property that is specific to seawater (and pure water) or if there
is a fundamental thermodynamic reason why this should be the case for all
fluids; to date I have been unable to find a thermodynamic principle that would
ensure that it would be the case for all fluids [I should look for a counterexample
fluid]. Specific volume (rather than density) is the variable that naturally
appears in the FTR as Pdv and vdP, and for good reason, since like the other
variables that appear in the FTR such as internal energy, enthalpy, entropy and
Absolute Salinity, specific volume is a “per unit mass” variable, not a “per unit
volume” variable.

The fact that turbulent mixing at constant pressure always destroys specific
volume v also implies that internal energy u is always produced by this

turbulent mixing at constant pressure. To see this we start with the First Law of
Thermodynamics, Eqn. (B.19),

dh dpP du dv dn ds
——v— | = p| —+(p+tP)— | = T +t)—+u—=
p(dz Vdr] p(dr (» O)dt] p(( 0 )dt T J (B.19)

= —V-F*-V-F?+ pe,

and cast it in divergence form so that the First Law of Thermodynamics becomes

dp (p+R)dv

(ph)l + V~(puh) mriie (pu)t + V~(puu> + T (B.19a)

= —-V-F*-V-F?+ pe.
The turbulent mixing at constant pressure conserves enthalpy and each of the
parts of this equation is zero for a control volume that encircles the mixing
region. Since specific volume is always destroyed by turbulent mixing, that is
dv <0, the second part of Eqn. (B.19a) implies that internal energy, u, is always
produced by turbulent mixing at constant pressure. Moreover, the amount of
production of internal energy is proportional to the absolute pressure ( p+ Po) !
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Non-conservative production of Conservative Temperature

When fluid parcels undergo irreversible and complete mixing at constant
pressure, the thermodynamic quantities that are conserved are mass, Absolute
Salinity and enthalpy. As above we consider two parcels being mixed without
external input of heat or mass, and the three equations that represent the
conservation of these quantities are Eqns. (A.16.2) — (A.16.4). Potential enthalpy
1 and Conservative Temperature © are not exactly conserved during the
mixing process and the production of © is given by

m O, +m,0,+ m&® = mO. (A.18.1)
Enthalpy in the functional form % = ﬁ(S +-0,p) is expanded in a Taylor series of
S, and © about the values S, and © of the mixed fluid, retaining terms to

second order in [S,,—S,;]=AS, and in [0,-0,]=AO. Then & and h, are
evaluated and Eqns. (A.16.4) and (A.18.1) are used to find

50 =

1
2 2
he he ©

A h h
mm | heo (A@Y 4 279 A@AS, + 255 (A, L (A182)
m A h A

Graham and McDougall (2013) have shown that the same form of the non-
conservative production terms in Eqn. (A.18.2) also appears in the following
turbulent evolution equation for Conservative Temperature, in both the
epineutral and vertical diffusion terms (see appendix A.21 for an explanation of
the symbols that appear in this thickness-weighted averaged equation),

e 90| .~  _00 o A A .
E = E + V'VnG) + ea—z = )/ZVn-(yZ KV”G))-F(D@Z)Z-F(‘:/}Z@
};00 ~ - /;G)S - v hs s P -
+ K| =V 0.V o+2— A Vo.VSs +—= = V.s,-V.S | (Al183)
he hy he
]A ~ 2 S l; A \2
+ D| 26242200 5, + =2 (S, |
hg he, z he, z

The reasoning behind the derivation of this equation is as follows. A single
turbulent mixing event is considered, with the mixing event occurring at the
pressure p™. A new potential enthalpy variable 4" is constructed with the
reference pressure of the potential enthalpy being p™. During the turbulent
mixing event at p™ both enthalpy % and the potential enthalpy variable A" are
conserved. Moreover, since 4" is a “potential” variable, it is unchanged as
seawater parcels are advected vertically to arrive at the pressure p” where they
are subject to turbulent mixing. Hence, for the purpose of analyzing the
turbulent mixing process at pressure p”, h"™ behaves as both a “potential”
variable and a conservative variable. This ensures that the epineutral turbulent
flux of A" and the small-sale isotropic diffusion 4" can be treated in the same
way as the corresponding turbulent fluxes of an ordinary conservative variable
such as Preformed Salinity (we outline this averaging procedure on pages 96 —
99 of these lectures below).

This enables the appropriate averaging of the instantaneous conservation
equation of 4" to be performed and the final step to arrive at Eqn. (A.18.3)
above is to relate the gradients of 4" to the corresponding gradients of Absolute
Salinity and Conservative Temperature using the functional relationship
h" = l;(SA,Q,p’"). This reasoning and the derivation of Eqn. (A.18.3) can be
found in sections 3(b) and 3(c) of Graham and McDougall (2103).

In order to evaluate the partial derivatives in Eqns. (A.18.2) and (A.18.3),
first write enthalpy in terms of potential enthalpy (cg ©) using Eqn. (3.2.1), as
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h=(S,.0.p) = 20 + j;o(SA,G,p') ar’. (A.18.4)
0

Below we will use the relevant thermal expansion coefficient o® and saline
contraction coefficient ﬁe, defined with respect to Absolute Salinity and
Conservative Temperature by

a@__la_p

== and B° = 19p
p 00

= (2.18.3), (2.19.3)
p oS, o

Spsp

Eqn. (A.18.4) is now differentiated with respect to ® giving

ho|. =y =0 + j;%(SA,@,p') P =+ j;:ag/p dP’.  (A.185)

SpsP
The right-hand side of Eqn. (A.18.5) scales as cf; + p ' (P-PR)a®, which is more
than cg by only about 0.0015cg for (PA—PO) as large as 4x10” Pa (4,000 dbar).
Hence, to a very good approximation, /g in Eqns. (A.18.2) and (A.18.3) may be
taken to be simply cg .

As an exercise, use Eqn. (A.18.4) to show that an adiabatic and isohaline
pressure change of 10’ Pa (1,000 dbar) causes a change in enthalpy / as large as
does an isobaric change in temperature of about 2.5°C. This is because
enthalpy / does not possess the “potential” property.

Why is the approximation fze = cE so accurate when the difference between
enthalpy, %, and potential enthalpy, /°, as given by Eqns. (3.2.1) and (A.18.4),
scales as p”' (P—PO) which is as large as typical values of potential enthalpy?

The reason is that the integral in Eqns. (3.2.1) or (A.18.4) is dominated by the

integral of the mean value of p~', so causing a significant offset between / and

h° as a function of pressure but not affecting the partial derivative l;@ which is
taken at fixed pressure. Even the dependence of specific volume on pressure
alone does not affect /. It is only the dependence of specific volume on © at

fixed pressure that affects /g .

Recall from Eqn. (A.11.15), namely

A T +t
els, ,= ((Tjiw)) c. (A.11.15)
and combining this with (A.18.5) we see that
-0
((; +e)) ¢ = J,e%lp ar = [ o(s,.0.0) aP (A.18.5)
0

which is an interesting relationship between a temperature difference on the left-
hand side (which is related directly to the functional dependence of entropy on
in situ temperature and pressure) and a pressure integral of essentially the
thermal expansion coefficient on the right-hand side. We actually go between in
situ and potential temperatures by solving the identity n(S As0, pr) = n(S ol p),
but Eqn. (A.18.5a) shows that we could instead calculate the difference between
the in situ and potential temperatures from knowledge only of \3(5 10, p) .

The second order derivatives of 4 are needed in Eqns. (A.18.2) and (A.18.3),
and these can be estimated by differentiating Eqn. (A.18.4) or (A.18.5), so that,
for example,

A P P oo v
hoo = IPOV@@ dP’ = ,[Po(a /,0)(9 ar’, (A.18.6)
so that we may write Eqn. (A.18.2) approximately as (assuming my=m,)
(P—P) R 5 . A 5
50 ~ 8000 {v@@ (80)’ + 295 AOAS, + ¥5 5, (AS,) } (A.18.7)

p
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This equation is approximate because the variation of Vg, ‘;GSA and v, o with
pressure has been ignored. The dominant term in Eqn. (A.18.7) is usually the
term in Vgy and from Eqn. (A.19.2) above we see that J® is approximately
proportional to the non-conservative destruction of specific volume at fixed
pressure v caused by the “cabbeling” non-linearities in the equation of state
(McDougall, 1987b), so that
o= PR (ney -
8¢, c

(P-5)

5v. (A.18.8)

The production of © causes an increase in Conservative Temperature and a
consequent decrease in density of —pa®d9. The ratio of this change in density
(using Eqn. (A.18.7)) to that caused by cabbeling (from Eqn. (A.19.2) and using
o ~—p>dv)is —(P—Po)ae/pcg which is about 0.0015 for a value of (P—F)) of
40 MPa. Hence it is clear that “cabbeling” has a much larger effect on density
than does the non-conservation of ©. Nevertheless, it is interesting to note
from Eqn. (A.18.7) that the non-conservative production of © is approximately
proportional to the product of sea pressure and the strength of cabbeling, dv .

Figure A.18.1. Contours (in °C) of a variable that is used to illustrate the non-
conservative production of Conservative Temperature © at p =600 dbar. The
cloud of points show where most of the oceanic data reside at p = 600 dbar.
The three points that are forced to be zero are shown with black dots.

At the sea surface Conservative Temperature © is totally conserved
(3 =0). The expression for the non-conservative production of Conservative
Temperature, J9, increases almost linearly with pressure (see Eqn. (A.18.7)) but
at large pressures the range of temperature and salinity in the ocean decreases,
and from the above equations it is clear that the magnitude of 5O is
proportional to the square of the temperature and salinity contrasts. McDougall
(2003) concluded that the production J® between extreme seawater parcels at
each pressure is largest at 600 dbar. The magnitude of the non-conservative
production of Conservative Temperature, J0, is illustrated in Figure A.18.1 for
data at this pressure.

The quantity contoured on this figure is the difference between © and the
following totally conservative quantity at p =600 dbar. This conservative
quantity was constructed by taking the conservative property enthalpy % at this
pressure and adding the linear function of §, which makes the result equal to
zero at (S, =0, ©=0°C) and at (SA=35.165 04gkg™, ©=0 °C). This quantity is
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then scaled so that it becomes exactly 25 °C at (SA =35.165 04gkg™", © =25 °C).
In this manner the quantity that is contoured in Figure A.18.1 has units of °C
and represents the amount by which Conservative Temperature © is not a
totally conservative variable at a pressure of 600 dbar. The maximum amount of
production by mixing seawater parcels at the boundaries of Figure A.18.1 is
about 4x107° °C although the range of values encountered in the real ocean at
this pressure is actually quite small, as indicated in Figure A.18.1.

From the curvature of the isolines on Figure A.18.1 it is clear that the non-
conservative production of Conservative Temperature at p =600 dbar is
positive, so that an ocean model that ignores this production of Conservative
Temperature will slightly underestimate ®. From Eqn. (A.18.2) one sees the
non-conservative productlon of Conservative Temperature is always positive if
h@@>0 hs s, >0 and (hes ) < h@@ hs s,» and Graham and McDougall (2013)
have shown that these requirements are met everywhere in the full TEOS-10
ranges of salinity, temperature and pressure for both the full TEOS-10 Gibbs
function g(S A p) and by the polynomial expression for specific enthalpy
h (S 10, p) of the Gibbs SeaWater (GSW) Oceanographic Toolbox.

Depth-integrated measures of the non-conservation of 6,7 and ©

Graham and McDougall (2013) have derived the evolution equations for
potential temperature, Conservative Temperature and specific entropy in a
turbulent ocean, with the one for Conservative Temperature being

& 06| . .00 o A - -
v +v-VO+ e = ?’ZV,,'(VZ KVn®)+(DG)Z)Z+e/h@
hos hy
+ K 00veve+2 AV 0.V S, + -2y § VS | (A183)
h@ h@ hG)
h h h 2
+ D 06742226 5, + 23, )
he he A gy U

The red terms on the second and third lines of this equation are the non-
conservative production terms and they can be evaluated in an ocean model.

One way of quantifying the magnitude of these red terms in Eqn. (A.18.3) is
to vertically integrate these terms and to express this vertical integral as a
vertical heat flux. That is, consider a vertical ocean water column that is the full
depth of the ocean and is one square meter in area. In terms of its effect on the
depth-integrated heat budget, the vertical integral of the red source terms is
equivalent to an extra air-sea or geothermal heat flux. This equivalent surface
flux is shown as a histogram for the whole world ocean in the figure below.
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The 95 percentile largest values of these four error measures is shown below.

This demonstrates that the non-conservative source terms of potential
temperature are two orders of magnitude larger than those for Conservative
Temperature, and that the dissipation of kinetic energy is almost an order of
magnitude larger than the non-conservative source terms in the evolution
equation for Conservative Temperature.

To put this in perspective, the mean geothermal heat flux is ~86.4 mW m?,
and the extra surface heat flux that the planet is receiving now from global
warming is ~1.5 W m™=.
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Keeping track of “heat” in the ocean; advection and diffusion of heat

We have seen that the First Law of Thermodynamics is practically equivalent to
the conservation equation for Conservative Temperature ©. We have
emphasized that this means that the advection of “heat” is very accurately given
as the advection of cg@ In this way c2® can be regarded as the “heat content”
per unit mass of seawater. The error involved with making this association is
approximately 1% of the error in assuming that either cgﬁ or ¢,(8,,6, 0dbar)e
is the “heat content” per unit mass of seawater.

A flux of heat across the sea surface at a sea pressure of 0 dbar is identical to
the flux of potential enthalpy which is exactly equal to cg times the flux of
Conservative Temperature ©. By contrast, the same heat flux across the sea
surface changes potential temperature € in inverse proportion to ¢, (S4.6,0)

which varies by 5% at the sea surface, depending mainly on salinity.

The First Law of Thermodynamics can be approximated as
do

049 _ o oy .  _V.FR_v.RQ
Py, = & (p®) + cIV-(pOu) V.FR-V.FQ+pe,  (3.23.1)
with an error in © that is approximately one percent of the error incurred by
treating either c?,ﬁ or ¢,(S,,60,0) 6 as the “heat content” of seawater, and
approximately 10% of the error in ignoring the dissipation rate of turbulent

kinetic energy term pe in this equation. Equation (3.23.1) is exact at 0 dbar.

Because the left-hand side of the First Law of Thermodynamics, Eqn.
(3.23.1), can be written as density times the material derivative of c2® it follows
that ® can be treated as a conservative variable in the ocean and that c?,@ is
transported by advection and mixed by turbulent epineutral and dianeutral
diffusion as though it is the “heat content” of seawater. For example, the
advective meridional flux of “heat” is the area integral of pvh’ = pvcf;@ (here v
is the northward velocity).

Some have argued that because enthalpy is unknown up to a linear function
of salinity, it is only possible to talk of a flux of “heat” through an ocean section
if the fluxes of mass and salt through the ocean section are both zero. This
opinion seems to be widely held, but it is incorrect. The fact that c2® is
unknowable up to a linear function of §, does not affect the usefulness of h° or
c2® as measures of “heat content”:- the difference between the meridional (i.e.
northward) fluxes of c2® across two latitudes is equal to the area-integrated air-
sea and geothermal heat fluxes between these latitudes (after allowing for any
unsteady accumulation of c2® in the volume), irrespective of whether there are
non-zero fluxes of mass or salt across the sections. This powerful result follows
directly from the fact that c2® is taken to be a conservative variable, obeying the
simple conservation statement Eqn. (3.23.1) (modulo the dissipation of kinetic
energy, pe ). No one would doubt the sensibleness of calculating the meridional
flux of a general passive tracer that obeyed such a conservation evolution
equation, and the same applies to the flux of potential enthalpy.

61



Thermodynamics Lectures, 2017 62

The intuitive explanation of why Conservative Temperature makes sense

These lectures have largely demonstrated the benefits of potential enthalpy and
Conservative Temperature from the viewpoint of conservation equations, but
the benefits can also be deduced by the following parcel-based argument.

1. First, the air-sea heat flux needs to be recognized as a flux of potential

enthalpy which is exactly cg times the flux of Conservative

Temperature.
2. Second, the non-conservative production of Conservative Temperature
at non-zero pressure is calculated from the mixture of two seawater

parcels (as in the non-equilibrium, Taylor series analysis of Eqn. (A.18.2))
and shown to be much less than that for potential temperature.

3. Third, note that the ocean circulation can be regarded as a series of
adiabatic and isohaline movements during which © is absolutely
unchanged (because of its “potential” nature) followed by a series of
turbulent mixing events during which © is almost totally conserved.

Hence it is clear that © is the quantity that is advected and diffused in an almost
conservative fashion and whose surface flux is exactly proportional to the air-sea
heat flux.
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The correct explanation of the adiabatic lapse rate I'

ArcticMix2015-ctd1.eps, plot_CBDW.m, 09-Sep-2015 14:34:02
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The adiabatic lapse rate I" is the change in in situ temperature ¢ with pressure
when entropy 71 and Absolute Salinity S, are held constant. This vertical
gradient of in situ temperature is commonly observed in the ocean in well-mixed
layers, for example, the surface mixed layer, the benthic (bottom) mixed layer
and occasionally at mid depth (e.g. in Meddies).

From the Fundamental Thermodynamic Relation Eqn. (A.7.1)

du+(p+B)dv = dh—vdP = (7, +1)dn + uds, |. (A7.1)
we find that
oh ~ oh ~
%S = h17 = (%+t) and B_PS =h, =v, (Laspse_1a,b)
AP ATl

where we consider enthalpy in the functional form &= h (S Tl p) . Now
differentiate Eqn. (Lapse_la) with respect to pressure, to find that

po 2 o @] ) vl v _ e
JoP So JoP 5,0 onopP S " T on ser Mrls , Tels, , Tols,
- (7, +1)o’
Err nr PCP(SAJaP)
_ T _ (7, +6)o’
e pc,(5,.6.0)
_ e _ (To+09) i - (Toz@),;% _ (To+90)06e |
TI@ cp cp pc/)

The reference pressure of the potential temperature 6 that appears in the last
two lines of Eqn. (2.22.1) is p, =0 dbar. Here the thermal expansion coefficients
are
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The adiabatic (and isohaline) lapse rate I" is commonly (and incorrectly)
explained as being proportional to the ( p+P0)dv work done on a fluid parcel as
its volume changes in response to a change of pressure. According to this
explanation the adiabatic lapse rate I' would increase linearly with (i) pressure
and (ii) the fluid’s compressibility, but neither of these dependencies occur.

This incorrect explanation starts with the Fundamental Thermodynamic
Relation in the form

du+(p+B)dv = (T, +¢)dn + uds,, (A7.1)

and for an isentropic and isohaline change in pressure the right-hand side is
zero. An increase in pressure in this isentropic and isohaline situation means
that the change in specific volume v is given in terms of the isentropic and

isohaline compressibility k¥ =-v"'v as dv = —vkdP and the change in

. . P‘ Sa-n
internal energy is

du = (p+B)vkdP = v d(%l:p+PO:|2). (Lapse_1)

So far this is correct; an isentropic and isohaline increase in pressure does indeed
increase the parcel’s internal energy u by exactly this amount.

Then the traditional (and incorrect) explanation says that this increase in
internal energy u results in a corresponding increase in in situ temperature, by
dividing du by an appropriate specific heat capacity. This step is incorrect
because the dependence of internal energy on pressure has been ignored. That
is, regarding u = u(S Aol p), the total derivative of internal energy is

du = uSAdSA+ u dT+u,dP, (Lapse_2)

and the traditional explanation of the adiabatic lapse rate assumes that the last
term here is zero. While this is true of a perfect gas, it is very “untrue” of a
liquid like water and seawater. For a liquid this term can be two or three orders
of magnitude larger than du = ( p+PO)deP, so the dominant balance in Eqn.
(Lapse_2) for aliquidis 0 = u,dT+u,dP .
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The adiabatic lapse rate is (a) proportional to the thermal expansion
coefficient and (b) is independent of the fluid’s compressibility. Indeed, the
adiabatic lapse rate changes sign at the temperature of maximum density (where
o', 0’ and o all change sign) whereas the compressibility is always positive.
This change in sign of the adiabatic lapse rate I" occurs even though the work
done by compression, ( p+P0)dv , is always positive (for a increase in pressure).

Hence, in cold lakes where the thermal expansion coefficient is negative, the
adiabatic lapse rate is negative, so that as the pressure is increased adiabatically,
the in situ temperature actually decreases! The adiabatic lapse rate I" represents
that change in temperature that is required to keep the entropy (and also 8 and
©) of a seawater parcel constant when its pressure is changed in an adiabatic
and isohaline manner.

The traditional explanation has found its way into our textbooks because it
works perfectly for a perfect gas; the missing term that we identified just
happens to be zero for a perfect gas, but it is the dominant term for a liquid.

Remember, the adiabatic lapse rate has nothing whatsoever to do with the
( p+P0)dv work done in changing the internal energy of a fluid parcel. This
explanation is wrong even for a perfect gas (where you get the right answer for
the wrong reason); for a liquid it is wrong by orders of magnitude.
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The adiabatic lapse rate and the potential temperature of ice Ih

Ice Ih is the form of ice with hexagonal packing of the water molecules. This is
the form of ice that is found in the range of temperatures and pressures found on
planet earth.

The adiabatic lapse rate is equal to the change of in situ temperature experienced
when pressure is changed while keeping entropy (and salinity) constant. This
definition applies separately to both ice and seawater (where one needs to keep
not only entropy but also Absolute Salinity constant during the pressure
change). In terms of the Gibbs functions of seawater and of ice Ih the adiabatic
lapse rates of seawater T' and of ice T™ are expressed respectively as

ot ot ot g Ty +t)o!

r-— - -4 --f& :M, (Ice_1)

S 5,0 5,0 &rr pe,
and
) - ah

oo 91 _ o __g_;?’_m (Ice_2)
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where o' and o™ are the thermal expansion coefficients of seawater and ice Th
respectively with respect to in situ temperature.

The adiabatic lapse rates of seawater and of ice are numerically substantially
different from each other. The thermal expansion coefficient of ice does not
change sign as does that of seawater when it is cooler than the temperature of

. . . . . h - .
maximum density, and the specific heat capacity of ice ¢, is only approximately
52% that of seawater ¢, .

Figure Ice_1(a) below shows the ratio F/ '™ of the adiabatic lapse rates of
seawater and ice at the freezing temperature, as a function of the Absolute
Salinity of seawater and pressure. For salinities typical of the open ocean, the
ratio F/ '™ is about 0.1 indicating that the in situ temperature of ice varies ten
times as strongly with pressure when both seawater and ice Ih are subjected to
the same isentropic pressure variations. This must be taken into account when
considering the vertical motion of frazil ice and the vertical motion of seawater
and frazil ice mixtures.

Figure Ice_1. (a) The ratio of the adiabatic lapse rates of seawater and of ice Ih,
F/ '™, at the freezing temperature. (b) The difference (in °C) between the
potential temperatures of seawater 8 and of ice 8™ for parcels of seawater and
ice whose in situ temperature is the in situ freezing temperature.
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The freezing temperature of ice in contact with seawater

The freezing of seawater occurs at the temperature ¢,

at which the

teezing

chemical potential of water in seawater " equals the chemical potential of ice

Th

u'. Hence the freezing temperature ¢,

equation

or equivalently,

is found by solving the implicit

teezing

u (SA’ Liicezing > P ) =yt ( Ureezing> P ) , (Ice_3)

in terms of the two Gibbs functions,

g(SA’ tfreezing’p) —Sx8s, (SA’ tfreezing’p) =g" ( tfreezing’p)' (Ice_4)

The freezing in

situ temperatures derived from Eqn. (Ice_4) were converted to

the Conservative Temperature at which air-free seawater freezes and are shown

in Figure Ice_2(a) as a function of pressure and Absolute Salinity. You can see

that whether a water molecule prefers to remain in seawater or prefers to join
the solid matrix of water molecules called “ice” depends on the salinity of the
seawater and on pressure.

Figure Ice_2.
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(a) The Conservative Temperature (in °C) at which air-free

seawater freezes as a function of pressure and Absolute Salinity. (b) The
difference between the freezing Conservative Temperature derived from EOS-80
and that of TEOS-10, with the contours being in mK.
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The figure below is another way of plotting the freezing temperature of seawater.

Figure Ice_3. The in-situ freezing temperature (in °C) of air-free
seawater as a function of pressure (in dbar) and Absolute Salinity,
determined from the equilibrium freezing condition Eqn. (Ice_4). In
the context of sea ice, the in situ temperature is the temperature of

both the pure ice Ih phase ™ and of the trapped pockets of brine.

When discussing the thermodynamic equilibrium between seawater and ice
in the oceanographic context there are two common situations. One is called
“sea ice” where there are trapped pockets of seawater inside a matrix of ice
crystals. This trapped seawater is commonly called “brine” as its salinity can be
very large when the temperature is cold.

The other situation is where there are small ice crystals (frazil) are suspended
in a much larger volume of seawater so that the mass fraction of ice is small.

In both situations the ice and the seawater exist in thermodynamic
equilibrium, so that their in situ temperatures are the same. However, as we
have seen, the potential temperatures of the ice and seawater phases are
different (unless the sea pressure is zero).
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Melting of ice into seawater

The First Law of Thermodynamics says that when a process occurs at
constant pressure, and without any external input of energy with the
environment, then total enthalpy is conserved.

So the conservation equations for mass, salt and enthalpy during an adiabatic
melting event at constant pressure are

f

Mgy = méw + oy, (Ice_5)
méy, St = miy Sk, (Ice_6)
msfwhf = méwhi + mlhhlh . (Ice_7)

The superscripts i and f stand for the “initial” and “final” values, that is, the
values before and after the melting event, while the subscripts SW and Ih stand

for “seawater” and “ice Ih”. The mass of ice m, is assumed to melt completely,

Th
so in the final state there is no ice as all; it is all seawater.

The mass, salinity and enthalpy conservation equations (Ice_5) — (Ice_7) can
be combined to give the following expressions for the differences in the Absolute
Salinity and the specific enthalpy of the seawater phase due to the melting of the

ice,
(s5-51) = —:;Tlhsj\ = —whsi, (Ice_8)
SW
(hf - hi) = - wlh(hi _ h“‘) - (S/:S_—SA)(h - h“‘), (Ice_9)
A

where we have defined the mass fraction of ice Th w™ as my, / msfw . The initial
and final values of the specific enthalpy of seawater are given by
A= h(Sj\,ti,p) = ﬁ(S;,@i,p) and A' = h(Si,tf,p) = i;(Si,@f,p). These equations
are illustrated in the following diagram

(@)
h A
hI’h seawater
N >

Th

Figure Ice_4(a). This Absolute Salinity — enthalpy diagram illustrates Eqns.
(Ice_8) and (Ice_9) which embody the conservation of Absolute Salinity and
enthalpy when ice Ih melts into seawater at fixed pressure. The initial values of
the Absolute Salinity and enthalpy of seawater and of ice Th are shown by the
two solid dots, and the final values of Absolute Salinity and enthalpy of the
seawater after the ice has melted are shown by the four open circles (for four

Ih).

different values of the ice mass fraction w These final values lie on the

straight line on this diagram that connects the initial values (the solid dots).
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seawater

Figure Ice_4(b). The same initial and final data are shown on the Absolute
Salinity — in situ temperature diagram. Note that the final points (the open
circles) do not lie on the straight line connecting the initial points (the solid dots)
on this diagram.

The final values of Absolute Salinity, S[:, and enthalpy, nt, given by Eqns.
(8) and (9) are illustrated in Fig. Ice_4(a) for four different values of the ice mass
fraction w™ (the four open circles). These final values, (Si,hf), lie on the
straight line on the Absolute Salinity - enthalpy diagram connecting (S;, hi) and
(0, hlh). The fact that the same data does not fall on a straight line on the
Absolute Salinity — in situ temperature diagram in Fig. Icw_4(b) nicely illustrates

that temperature is not conserved when melting occurs.

The linearized expression for the S, - © ratio when melting occurs

Here we linearize equations (Ice_8) and (Ice_9) to find the expressions
(Ice_16) — (Ice_18) for the ratio of the changes in salinity and temperature when a
vanishingly small mass fraction of ice melts into seawater at a given pressure.

The enthalpy difference 4"~ 4' in Eqn. (Ice_9) is expanded as a Taylor series
in the differences in Absolute Salinity and temperature, and the first order terms
in these differences are retained, leading to

(zf - ti) + (Sf _s )h ~ —(Sf* _ S‘i*)(hi - h‘h) o w‘h(hi - h”‘) (Ice_10)
p AT P, T g - ’ -
A
where ¢ s the specific heat capacity of seawater, ¢, = = 0h/oT | and
hs = = 0h/dS ‘ . is the derivative of the seawater specific enthalpy w1tﬁ respect

to Absolute Salinity at constant in situ temperature and constant pressure.

By regarding specific enthalpy to be a function of Conservative Temperature
in the functional form ﬁ(S 10, p) the Taylor series expansion of Eqn. (Ice_9)
yields
(s5-51) |
~ —(h‘ h”‘) - —wlh(hl—hlh), (Ice_11)

f_ o)/ £ _ i)/
(07 - 0o + (55 - 54 ), 5
where h = dh/ 8@)‘ is the partial derivative of the seawater specific enthalpy
with respect to Conservatlve Temperature © at fixed Absolute Salinity, and
fzSA = 0h/dS A‘@ is the partial derivative of the seawater specific enthalpy with

P
respect to Absolute Salinity at fixed Conservative Temperature ©. These
equations can be rewritten as
A Sy -,
0Tc, = (tf - t')c = u
p p
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f i
(si-s

—J(h— W= Syhy ) = = wh (=0 S, ). (ice_13)

50 iy = (0" - '), = 5
A

The bracket on the right-hand side of Eqn. (Ice_12), A— M-S N X if evaluated
at the freezing temperature tfreezing(S \> p) , is the latent heat of melting (that is,
the isobaric melting enthalpy) of ice into seawater. Note that at p = 0 dbar }AZSA is

zero while hg is nonzero.
A

The derivation of the isobaric melting enthalpy in Feistel et al. (2010) and I0C
et al. (2010) considered the seawater and ice to be in thermodynamic equilibrium
during a slow processes in which heat was supplied to melt the ice while
maintaining a state of thermodynamic equilibrium during which the
temperature of the combined system changed only because the freezing
temperature is a function of the seawater salinity. During this reversible process
the enthalpy of the combined system increased due to the heat externally
applied. The latent heat of melting is defined to be (from Eqn. (3.34.6) of IOC et
al. (2010))

E(80p) = MSaticesng ) = 1™ (trccsing:?) = Sl (Sapeengo?) - (lce_14)

In contrast, the present derivation (that is, Eqns. (Ice_12) and (Ice_13)) applies
to the common situation when the seawater is warmer than the ice which is
melting into it, so that the two phases are not in thermodynamic equilibrium with
each other during the irreversible melting process. That is, the seawater
temperature may be larger than its freezing temperature and the ice temperature
may or may not be less than its freezing temperature. The guiding
thermodynamic principle is that there is no change in the enthalpy of the
combined seawater and ice system during the irreversible melting process, since
this process occurs adiabatically at constant pressure.

When freezing (as opposed to melting) is considered, the Second Law of
Thermodynamics implies that spontaneous freezing cannot occur except when
the seawater is at the freezing temperature, and there must be some incremental
external change (for example a decrease in pressure in the case of frazil
formation, or a loss of heat from the system) in order to induce the freezing.

Taking the limit of melting a small amount of ice into a seawater parcel so
that the changes in the seawater temperature and salinity are small, we find
from Eqn. (Ice_12) that the ratio of the changes in in situ temperature and
Absolute Salinity are given by (using Eqn. (Ice_8) for the salinity increment)

h
s ot h—h' _SAhSA

A
A

C
melting at constant p P

W(S ot p) = B (e™, p) = S,y g (Syotop)
c, (SA,t,p)

while the corresponding ratio of the changes in Conservative Temperature and

(Ice_15)

Absolute Salinity are (from Eqn. (Ice_13))

5 99

A
A

Th 7
h=h"=S, h

h

melting at constant p ©
i(s,.0.p) - h“‘(t"‘,p) — 5, (S,,0.1)
hyS,.0,p)

(Ice_16)

>
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where the second lines of these equations have been included to be very clear
about how these quantities are evaluated. At p =0 dbar these equations become

SA5_0 _ hy = by = S, hsA(SA’e’O)

A lmelting at p=0 p (SA’O’O) (Ice_17)

h(S,.6.0) = A" (6™,0) = 5, g (5,.6.0) )
- c,(5,.6.0) ’
and
50 ho— b jih (9"’,0)

Sy =20 -9-——17, (Ice_18)

Almelting at p =0 p p

where the potential temperatures of seawater 6 and of ice 8™ are both
referenced to p=0dbar. Note that the potential enthalpy of seawater
referenced to p=0dbar, hozh(SA,O,O)zﬁ(SA,G,O) is simply cg times
Conservative Temperature © where cg is the constant “specific heat”

¢, =3991.867 95711963 Jkg™ K.

The use of Conservative Temperature rather than potential temperature
means that the slope of the melting process on the S, —© diagram, 69/5S,,
involves a simpler expression, especially when the melting occurs at the sea
surface at p =0dbar, Eqn. (Ice_18), where (i) lAzSA(S A,@,O) is zero, and (ii), the
relevant “specific heat capacity” of seawater, ﬁ@ = cg (To +t) / (T0+9), reduces to
the constant cg , so that the specific enthalpy of seawater is simply cg multiplied
by the Conservative Temperature ®. Note that the numerator of the middle
expression of Eqn. (Ice_18) is simply the difference between the potential

enthalpies of seawater and of ice.

Note that the right-hand side of Eqn. (Ice_18) is independent of the Absolute
Salinity of the seawater into which the ice melts.

We first illustrate these equations for the ratio of the changes of Conservative
Temperature to those of Absolute Salinity by considering the melting to occur
very close to thermodynamic equilibrium conditions. If both the seawater and
the ice were exactly at the freezing temperature at the given values of Absolute
Salinity and pressure, then no melting or freezing would occur. In Fig. Ice_5 we
consider the limit as the temperatures of both the seawater and the ice approach

the freezing temperature. The ratio 5@)/ oS, from Eqn. (Ice_16) is shown

equilibrium
in Fig. Ice_5(a) with the seawater enthalpy evaluated at the freezing
Conservative Temperature and with the ice enthalpy evaluated at the in situ
freezing temperature, at each value of pressure and Absolute Salinity. This ratio

is proportional to the reciprocal of Absolute Salinity, so it is more informative to

simply multiply 5@)/ oS, by Absolute Salinity §, and this is shown in

equilibrium
Fig. Ice_5(b). It is seen that the melting of a given mass of ice into seawater near
equilibrium conditions requires between approximately 81 and 83 times as much
heat as would be required to raise the temperature of the same mass of seawater

by 1°C.

The corresponding result for the ratio of the changes of in situ temperature

and Absolute Salinity near equilibrium conditions
S, ot / N A‘equilibrium = le‘f (S e p) / c, (S PR p) can be calculated from Eqn.
(Ice_15), and the difference between S, 6t / oS A‘equilibrium and S, 60 / oS, cquilibrium

shown in Fig. Ice_5(c). The largest contributor to this difference between Eqns.
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(Ice_15) and (Ice_16) is due to the dependence of the specific heat capacity
€, | S theering p) on (i) Absolute Salinity, involving a 6.8% variation over this full
range of salinity, and (ii) on pressure, involving a change of 2.2% between 0 dbar
to 3000 dbar .

Figure Ice_5. (a) The ratio of the change of Conservative Temperature to that of

Absolute Salinity when the melting occurs very near thermodynamic equilibrium

conditions, 80/8S,|
equilibrium

evaluated at the freezing Conservative Temperature and with the ice enthalpy

, from Eqn. (Ice_16) with the seawater enthalpy

evaluated at the in situ freezing temperature, at each value of pressure and
Absolute Salinity. The values contoured have units of K( gkg™ )7

(b) This panel is simply Absolute Salinity S, times the values of panel (a), that
is, it is the right-hand side of Eqn. (Ice_16), evaluated at equilibrium conditions.

(c) The right-hand side of Eqn. (Ice_15) minus the right-hand side of Eqn.
(Ice_16), both evaluated at equilibrium conditions, illustrating the difference
between using in situ temperature versus Conservative Temperature. The

quantities contoured in panels (b) and (c) have units of temperature, K.

Equation (Ice_16) for S, 5@/ oS, meling at constant p is now illustrated when the

seawater and the ice Ih phases are not at the same temperature and they are not in
thermodynamic equilibrium at the freezing temperature. We begin by considering
melting of ice Ih at the sea surface, specifically at p =0 dbar, when Eqn. (Ice_16)
reduces to Eqn. (Ice_18), and this equation is illustrated in Fig. Ice_6(a) which
applies at all values of Absolute Salinity. The contoured values of Fig. Ice_6(a),
(ho - héh)/cg =0 - leh(elh)/co increase as 1.0 times changes in © and

p’
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decrease approximately as c;h / cg = 0.52 times changes in the temperature of the
ice.

Ih
S 60 _ ho s L ©) s 50
ASqo | - - c_o A T T PASo
A meltingatp =0 P A melting at p = 500 A melting atp =0

Figure Ice_6. (a) Contours of Eqn. (Ice_18),

h\ /.0 7l / 0 . .
SA5G)/5SA melingatp —0 = (ho - hy )/cp =0 -h (9 )/cp , for the melting of ice Th
into seawater at p =0dbar. The six stars are at the freezing temperatures

(¢t and ©) for Absolute Salinity values starting at 5 gkg™' with increments of 5 gkg™'
up to 30gkg™. (b) Difference between contours of Eqn. (16) at p =500 dbar,
S, 5@/ oS, meling atp = 500 and the corresponding ratio of panel (a) (where the pressure
was 0dbar) at S} =S, =35.16504 gkg™'. The double-starred point is at the freezing
temperatures (¢ and ©) at p =500 dbar and S; = 85o = 35.16504 g kg™,
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Taking the potential enthalpy of ice Ih to be a conservative variable

By comparing panels (a) and (b) of Fig. Ice_6 we are able to deduce a very
important approximation that will prove invaluable to coupled ocean/ice
modelling. Panel (b) shows the error in assuming that it is the potential
enthalpy of ice that is conserved when ice melts into seawater, rather than taking
the enthalpy of ice to be conserved, which is the correct thing to do. At a
pressure of 500 dbar the assumption that the sum of the potential enthalpies of
ice and seawater are conserved leads to an error of 0.15% in the change in
Conservative Temperature of the seawater as a result of melting. Most of this
error is due to the assumption regarding ice, not seawater, since the error
involved with assuming that the Conservative Temperature of seawater is
totally conservative reaches a maximum of 0.15% only at a much larger pressure
of 4000 dbar (Graham and McDougall, 2013).

The ratio of Eqns. (Ice_16) to (Ice_18) is

el
A melting at constant p — (TE)+ 0) h— hlh - SA hSA
@ (72)+t) hy = héh
5SA melting atp =0 (Ice—lg)
- 1+ (Q—t) " (To+9)[(h_ho)_(hlh _héh)_ SAhASA:|
(2 I ) R P m—

and the combination of enthalpy differences in the numerator of the last term
can be expressed as

o\ _ o 7 | =
=ty = (A" 1) = 5, |
P - 14 (Ice_20)
J[V(SA,G,p )— \% (9 , D )JdP -5, fvSA(SA,G,p )dP .
) fy
The last term here is small, showing that the dominant contribution is simply the
pressure integral of the difference in the specific volumes of seawater and of ice.

In Eqn. (Ice_19) the second term on the right-hand side, (O—t) / (To+ t), is
small compared with the third, so that the non-unity nature of Eqn. (Ice_19) can
be understood as being due to this third term, evaluated with the aid of Eqn.
(Ice_20), and this evaluation agrees with the plot of Fig. Ice_6(b).

We will take advantage of the smallness of panel (b) versus panel (a) of Fig.
Ice_6, or equivalently, the fact that Eqn. (Ice_19) is quite close to unity, to treat
the potential enthalpy of ice as conserved during not only advection but also
during melting and freezing events. This will greatly reduce the complexity of
coupled ocean/ice numerical models. This approximation brings the same
simplicity to ice as the introduction of Conservative Temperature has brought to
physical oceanography, in that the only variables that now need to be
considered when discussing “heat” budgets of seawater and of ice are the
potential enthalpies of seawater and of ice.
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An illustration from the Amery Ice Shelf

Figure Ice_7 shows oceanographic data obtained under the Amery Ice Shelf
that illustrates the ratio of the changes in Absolute Salinity and Conservative
Temperature, as given by Eqn. (Ice_16), when melting of ice occurs. The vertical
profile named AMO06 begins under the ice at a pressure of 546 dbar and the
uppermost 175 of the vertical profile is shown. The data in the uppermost 50-
100 dbar is closely aligned with the ratio given by Eqn. (Ice_16) (as shown by the
dashed line) evaluated at this pressure and with the ice temperature being the
freezing temperature at this salinity and pressure. Two freezing lines are shown
in Fig. Ice_7(b), for pressures of 0 dbar and 578 dbar.

Any observations cooler than the freezing temperature appropriate to 0 dbar
is evidence of the influence of melting of ice or of heat lost by conduction
through the ice. AMO6 is located on the eastern side of the ice shelf in an area
that is melting, as can be inferred by the presence of ocean water at AMO06 that is
well above the in situ freezing temperature at the base of the ice shelf. This
water is thought to be flowing in a primarily southwards direction from the
open ocean as it enters the under-ice cavity. The other CTD profile was taken
from borehole AMO5, located on the western side of the ice shelf in an area that
is refreezing (as is drawn in panel (a)) and represents flow that has likely come
from deeper in the sub-ice-shelf cavity, than at AMO06 (Post et al., 2013) and hence
has been in contact with the ice for longer. The upper 50m or so of this cast is at
the freezing temperature of seawater at this pressure. For both casts the data
near the upper part of the water column has the ratio of the changes of S, and
O in close agreement to the ratio given by Eqn. (Ice_16), the ratio predicted from
melting ice into seawater (dashed lines). The ice temperature that is needed to
calculate this S, —© ratio for each location has been taken to be the in situ
freezing temperature of ice in contact with the seawater at the pressure at the
base of the ice shelf. Moreover, on this figure the uppermost 100m of data of the
AMO5 data is approximately related to that of the AMO06 data through the
S, —O ratio of Eqn. (Ice_16). This would be consistent with the notion that the
same fluid is proceeding from AMO6 to AMO05 without being exposed to
significant heat loss Q to the ice (see panel (a)). The vertical profiles shown in
panel (b) are the average of several vertical profiles taken over the course of two
days, and the two locations were drilled within two weeks of each other.
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Figure Ice_7. (a) Sketch of the flow under an ice shelf. An inflow of relatively
warm water from the open ocean provides heat to melt the ice shelf. Buoyant
freshwater that is released during the melting process rises along the underside of
the ice shelf and can become locally supercooled at a shallower depth, leading to
the formation of frazil and basal accretion of marine ice.

(b) The top 175m of two CTD profiles taken below the Amery Ice
Shelf in East Antarctica at a melt site and at a refreeze site are shown. The warmer
and saltier of the two casts is AMO6 (see Fig 1 of Galton-Fenzi ef al. (2012)) starting
at a pressure of 546 dbar. The large round dot is ocean data very near the ice at
546 dbar, the triangle is 50 dbar deeper, the diamond 100 dbar deeper and the star
is 150 dbar below the bottom of the ice shelf at this location, indicated by the
circle. The other vertical cast, AMO05, is typical of re-freezing locations. The
uppermost 50 dbar of this cast is all at the freezing temperature at this pressure.
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Melting of sea ice into seawater

Sea ice contains a certain mass fraction of brine trapped inside the ice matrix.
Sea ice is produced when the surface of the ocean is cooled rapidly by very cool
air. The ice crystals then form so fast that some of the seawater is trapped in
small “pockets” inside the matrix of ice crystals.

We can quantify the melting of sea ice into seawater by conserving the same
three quantities, namely (i) mass, (ii) salt, and (iii) enthalpy, leading to

(see McDougall, T.J., P. M. Barker, R. Feistel and B. K. Galton-Fenzi, 2014:

Melting of ice and sea ice into seawater, and frazil ice formation. Journal of

Physical Oceanography, 44, 1751-1775.  for details)

f _ qi _ seaice i _ gseaice| _ | seaice [ gi _ qseaice
(S5-55) = — Dum(s) - sye] = — () - sy
Mgy

(hf _ hl) - _ Wseaice(hi _ hIh) + Wseaice mbrine (hbrine _ hlh)
mscaicc

_ Wseaice (hl _ hseaice) .

where the specific enthalpy of the composite material “seaice” is defined as the
mass-weighted sum of the specific enthalpies of the two phases,

seaice __ Th brine
h - (mlh /mseaice ) h+ (mbrine/mseaice ) h ’

and the Absolute Salinity — enthalpy mixing diagram looks like
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For sea ice melting into seawater at p = 0 dbar with initial properties
S} =Sy, =35.16504 gkg™', ©' =4°C, and with the sea ice salinity taken to be
Sffaice =5gkg™', the change in Conservative Temperature is shown in the left-

hand figure below. The right-hand figure shows the corresponding plot when
S/s\eaice =0 gkg—l )

What is the ratio of the changes in Conservative Temperature and Absolute
Salinity of seawater when a vanishingly small mass of sea ice melts into it?

To find this ratio we again linearize the above expressions for a vanishingly
small mass fraction of sea ice that melts, giving

(SA - SA)@

A

melting at constant p

Sseaice " R Sseaice brine brine 1 2
(1_ SAbrine j(h_h _SAhSA) + SAbrine (h_ h - |:SA_SA :| SA)
A

h

©

and this is illustrated below at p =0 dbar and at S; = 85o = 35.16504 g kg™ and
@' =1°C.

(SA - Sjjam)(;ﬁ

A

melting atp =0
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Frazil ice formation

When seawater at the freezing temperature undergoes upwards vertical motion
so that its pressure decreases, frazil forms, primarily due to the increase in the
freezing temperature as a result of the reduction in pressure. When this mixture
of seawater and frazil continues to rise to lower pressures (assisted by the
buoyancy provided by the presence of the ice), the frazil crystals will experience
a larger change in in situ temperature than does the seawater, simply because
the adiabatic lapse rate of ice is much larger (ten times as large) than that of
seawater (as we have found above).

We will here consider this situation under the assumption that the frazil and
the seawater moves together, so ignoring the tendency of the frazil to rise faster
than the seawater, driven by the buoyancy of the individual ice crystals. We
further assume that the uplift rate is sufficiently small that the in situ
temperature of the ice and the seawater are the same at each pressure, this
temperature being the freezing temperature. Under these conditions no entropy
is produced during the freezing process, i.e., this freezing process is reversible
and can be reversed by increasing the pressure, leading to the related reversible
ice melt.

We will study the thermodynamics of this process of adiabatic uplift of a
seawater-ice mixture via a thought process composed of two separate steps (Fig.
Ice_13). First we imagine the mixture of pre-existing ice and seawater to
undergo a reduction in pressure but without any exchange of heat, water or salt
between the two phases. That is, during this first part of the process the mass of
ice and the mass of seawater remain constant, and the change in the enthalpy of
the ice and the change in the enthalpy of the seawater are only due to the
pressure change. During this adiabatic process an (infinitesimal) contrast in in
situ temperature will develop between the ice phase and the seawater phase
because the adiabatic lapse rate of ice is much larger (by about an order of
magnitude) than that of seawater.

During the second part of our thought experiment the ice and seawater
phases will be allowed to equilibrate their temperatures and further frazil ice
will form so that the temperature of both the ice and seawater phases and the
final Absolute Salinity of the seawater phase will be consistent with the freezing
temperature at this pressure. This part of our thought experiment occurs at
constant pressure and so, from the First Law of Thermodynamics, we know that
enthalpy is conserved.
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Figure 13. Sketch showing the two-step thought process involved with
quantifying the formation of frazil ice Ih by the adiabatic uplift of a seawater
parcel which may contain pre-existing frazil ice. The step from stage 1 to stage 2
is undertaken without any exchange of heat or mass between the seawater and
ice Ih phases. While the in situ temperatures of the seawater and ice phases are
assumed to be identical at stage 1, at stage 2 they are unequal because the
adiabatic lapse rate of ice Ih is much larger than that of seawater. The step from
stage 2 to stage 3 is undertaken at constant pressure. In this step further ice
forms (as shown by the increase in number of the frazil ice crystals) and at the
end of this step, the seawater and ice phases have the same in situ temperature,
namely the freezing temperature appropriate to (i) that pressure and (ii) the final

value of seawater salinity.

Let the mass fraction of ice be w™ ; the mass fraction of seawater in the ice-
seawater mixture is then (1 - wlh). The total enthalpy per unit mass of the ice-
seawater mixture at stage 1 of Fig. 13 is the weighted sum of the specific
enthalpies of the two phases, namely

(1= W) i(5,-0,.1,) + wii™(61".p,), (Ice_34)

where we have chosen to write the specific enthalpy of ice in the functional form
h" (9"1, p) where the temperature variable is the potential temperature of ice 8™
with reference pressure 0dbar (O™ is not to be confused with the potential
temperature of seawater 6, since these two potential temperatures are not
equal).

In going from stage 1 to stage 2, both the seawater and ice phases undergo an
adiabatic change of pressure 6 P which changes their specific enthalpies by véP
and v"SP respectively (here v and v" are the specific volumes). Hence at
stage 2 the total enthalpy per unit mass of the ice-seawater mixture is (noting
that w fh

> =W

immaterial whether v and v™ are evaluated at the properties of stage 1 or those

and that at leading order in the perturbation quantities, it is

of stage 2)
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(1 - wllh)[ﬁ(S 81’171) +v5P] + wllh[ﬁlh (Gllh,pl) +y SP]. (Ice_35)

Al

In going from stage 2 to stage 3, the total enthalpy of the mixture is
conserved. Hence we equate the total enthalpies at these two stages, giving

Al

A3°

For an externally-imposed change in pressure this equation may be regarded as
giving the amount of new ice formed w;h - 1”‘ due to the adiabatic uplifting of
the ice-seawater mixture. The other important constraint that we know is that
the ice-seawater mixture is at the freezing temperature at both stages 1 and 3.
This turns out to enough information to solve the problem.

The enthalpies ﬁ(S 23:935 p3) and A" (G;h, p3) on the right-hand side of Eq.
(Ice_36) are now expanded in a Taylor series about the values at stage 1, keeping
the leading order terms. The pressure derivatives of these enthalpies, being the
specific volumes of seawater and of ice, give terms that cancel with the
corresponding terms on the left-hand side of the equation to leading order. The

remaining leading-order terms are

(7 =™ ) o™ = (1= w™)(hs 85, + g 00) — wiilh 56" = 0 (Ice_37)

Th

where sw™ = wi — wlIh

product (1 - wlh!) S, is constant so that
S, 8w = (1-w")5s,, (Ice_38)

. Since the salt always resides in the seawater phase, the

which reduces Eqn. (Ice_37) to

Th
Th r r w ~Th Th
(h —h —SAhSA)éSA - SAh@5® — SAi(l_wlh)he“‘w = 0| (Ice_39)

One of our key results for frazil ice is already apparent from this equation,

namely that as the mass fraction of frazil ice w" tends to zero, Eqn. (Ice_39)
tends to our existing result Eqn. (Ice_16) for the ratio 5@/ 0S8, for the melting of
ice Ih into seawater, repeated here,

Th r
h—h"-S, hSA

~

h

melting at constant p ©
h(S,-0.p) = (", p) = S, (5,.0.p)
i’@(SA’Q’p) ‘

However, there is an important difference as well, namely that the present frazil

5 99

A
A

(Ice_16)

ice relation Eqn. (Ice_39) for the ratio 80/8S, is actually simpler (or more
restrictive) than Eqn. (Ice_16) because the temperatures of both the ice and
seawater components are constrained to be at the freezing temperature; the ice
temperature cannot be lower that the freezing temperature nor can the
Conservative Temperature of the seawater exceed its freezing temperature.

Hence in the limit as the mass fraction of frazil ice w™

tends to zero, as the
pressure of a seawater-frazil mixture is changed, the ratio 89/8S, is illustrated
by the equilibrium situation of our existing Figures Ice_5(a) and (b). We will
return to this; for now this paragraph is just a heads up on the comparison
between what we have derived already (Eqn. (Ice_16)) and where we are headed

with the equations for frazil.
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Returning to the more general situation in which w"

is not vanishingly
small, we need to evaluate fzeuﬁ1 86™ in terms of differentials of Absolute Salinity

and pressure. The partial differential fz(;}ﬁ1 can be written as

}Nllh B ahlh‘ _ ahlh‘ atlh| _ m atlh

o = aelh‘ atlh‘ aelh| =% o™ (Ice_40)
P P

p p

The in situ temperature of ice Ih can be expressed as a function of the
potential temperature of ice Th and pressure as " = tlh(elh, p) so that the total
differential of the in situ temperature of ice is

atlh

h _
dr' = 0T

o™ + v'dp . (Ice_41)

p

This equation applies to any material differentials d¢™, d8™ and dP, and in
particular will apply to the differences between these properties at stage 1 and
stage 3 of our thought process. Hence we can write

atlh

h _
ot = 0T
p

56" + T5P. (Ice_42)

But the ice at both stages 1 and 3 is at the freezing temperature

Leering = Ureering (S \ p) so that 8¢™ can also be expressed as

5tlh — atfreezing

ot .
5 S+ freezing
S, A oP

p Sa

opP, (Ice_43)

and the partial derivatives here are known functions of the Gibbs functions of ice
Ih and seawater.

Combining Eqns. (Ice_42) and (Ice_43) and using the result in Eqn. (Ice_40)
gives our desired result for fze"ﬁ] 860™ , namely

5 S al‘freezing
+ | ——=—=]
A oP

p Sa

}Nllh 591h — CIh atfreezing
elh

r | os,

-T™|sP|. (Ice_44)

Substituting this equation into Eq. (39) gives a relationship between only
6S,,00,and 0P, namely

- Th ot . .
h—h"—S h - 8§, el 56 50
ATS, A(l—wlh) P aSA ‘,, A ATe
(Ice_45)
_S WIh Ih atﬁeezing _ Flh 5P = 0.

c
A h\ P
(1— w ) oP ’ S,
Another relationship between 65,,00, and 6P can be found from the
knowledge that in both stages 1 and 3 the seawater is at the freezing
Conservative Temperature, and since Gﬁeezing is a function of only §, and P,

the differences 6S,,90, and 6P are related by

0, .
5 S+ freezing
A opP

p Sa

00, .
5(") — freezing
oS

A

opP, (Ice_46)

and expressions for these partial derivatives are known in terms of the Gibbs
functions of seawater and of ice (we do not derive them here).

Eqns. (Ice_45) and (Ice_46) are two equations in 6S,, 0@, and 6P from
which we can find our desired relations for the ratios of changes in our
seawater-frazil ice mixture due to adiabatic uplift, namely 5@/ oS, , 5@/ OP and
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oS, /8P . By eliminating the pressure difference from these two equations we
find that

tfreezing _ Flh
oP
h— hlh _S h" S Wlh CIh atfreezing _ Sa agfreezing
A A (1 - Wlh) i aSA ‘p a®freezing aSA p
opP ¢
% A
Sy~ = -
Alfrazil atfreezing B ]—‘Ih
Ih oP
hoo+ w Th Sa
© (1 - Wlh) ? a(afreezing
opP
Sa

. (Ice_47)

The leading terms in both the numerator and denominator, namely
h—h"-§ Al;SA and fze are the same as in Eqn. (Ice_16) which applies to the
melting of ice Ih into seawater at fixed pressure, the only difference being that in
the present case both the ice and the seawater are at the freezing temperature.

So, as the mass fraction of ice tends to zero, Eqn. (Ice_47) tends to Eqn.
(Ice_16), so that at w™ =0 Eqn. (Ice_47) can be illustrated by Fig. Ice_5(a), which

is repeated below.

Figure Ice_5. (repeat of this figure) (a) The ratio of the change of Conservative
Temperature to that of Absolute Salinity when the melting occurs very near
thermodynamic equilibrium conditions, 50/8S, cquilibrium ” from Eqn. (Ice_16) with the
seawater enthalpy evaluated at the freezing Conservative Temperature and with
the ice enthalpy evaluated at the in situ freezing temperature, at each value of
pressure and Absolute Salinity. The values contoured have units of K( gkg™! )7

(b) This panel is simply Absolute Salinity S, times the values of panel (a), that
is, it is the right-hand side of Eqn. (Ice_16), evaluated at equilibrium conditions.

For non-zero ice mass fraction Eqn. (Ice_47) is plotted in Fig. Ice_14(a) at
S =S50 =35.16504 g kg™ (actually what is plotted is 80/8S,| ). The
dependence on the mass fraction of sea ice can be illustrated with the case
w" =0.1 when 50/ 55A|ﬁazil is different to the value at w™ =0 by about 7.4%.
Most of this sensitivity to w" comes from the denominator in Eqn. (Ice_47).
Eqn. (Ice_47) is again illustrated in Fig. Ice_15(a) where we show contours of
S, 56/55A|frazi1 at the fixed salinity S, =S, =35.16504 gkg™'. That is, Fig.
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Ice_15(a) is simply 35.16504 gkg™' times Fig. Ice_14(a), so that the quantity

contoured in Fig. Ice_15(a) is in temperature units.

Figure Ice_14. (a) Plot of 5@/ oS A|ﬁazi1 from Eqn. (Ice_47) as a function of the ice
mass fraction w™ and pressure. (b) Plot of 68/ SP‘ﬁaZil from Eqn. (Ice_48) as a
function of the ice mass fraction w™ and pressure. (c) Plot of S, / SP‘ﬂaZﬂ from
Eqn. (Ice_49) as a function of the ice mass fraction w™ and pressure. All three
panels have EPe seawater salinity S, =S, =35.16504 g kg™'. Panel (a) has units
of K(g kgfl) , panel (b) is in K(Pa)_ , while panel (c) is in (g kgfl)(Pa)il. The
values contoured in this figure were evaluated from the GSW algorithm
gsw_frazil ratios_adiabatic of the GSW Oceanographic Toolbox (www.TEOS-

10.o0rg).
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Similarly, by eliminating 65, from Eqns. (Ice_45) and (Ice_46) we find

ZLfgefz)ing _ rlh
. Th ot, . 20, .
h— hlh _ SA th _ SA w - CLh geezmg _ Sa afreezmg
(1 -w ) SA ‘p 86freezing SA p
oP s
&") a® eezin A
o9 — freezing S = (Ice_48)
op frazil opP ‘ 0. Ih of, .
z S h —hlh —S /:l\ S hA freezing w Ih ~"freezing
A"%s, T PA"e JS -\ n\7 3§
sl ) oos
and when 90 is eliminated from these same two equations we find
tfreezing _ rlh
Wlh aP N
he + ch A
© (1 - WIh) g a(afreezing
oP s
108 POy - - (Ice_49)
SA oP frazil op ‘S I r I a(afreezin WIh Th al‘freezin
M=k =S, he — S, hy SRR c g
A S, | (1 _ Wlh) » a8,
p p

The variation of Conservative Temperature with pressure under frazil ice
conditions, 80/ 5P‘ﬁazil, from Eqn. (Ice_48) is plotted in Fig. Ice_14(b) at
S, =8, =35.16504 g kg™'. It is seen that 5O/ SP‘ﬁaZﬂ is quite insensitive to the
frazil ice mass fraction w™. This is confirmed in Fig. Ice_15(c) where we show
the difference between 60/8P il

with pressure at constant Absolute Salinity, 0Oy, ... / 8P‘S .
A

and the corresponding derivative of O ..

The variation of Absolute Salinity with pressure under frazil ice conditions,
58,/ SP‘ﬂaZﬂ, from Eqn. (Ice_49) is plotted in Figure Ice_14(c) at
S, =Sy, =35.16504 gkg™' . This figure follows, of course, as simply the ratio of
the figures of panels (a) and (b).
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Figure Ice_15. (a) Plot of S, 30/8S A|frazil from Eqn. (Ice_47) as a function of the
ice mass fraction w" and pressure, for §, =S, =35.16504 g kg™'. This is
simply 35.16504 g kg™ times Figure Ice_14(a).

(b) Contour plot of panel (a) with the values of S, 0/ 55A|frazil evaluated
at ice mass fraction w™ =0 subtracted at each pressure.

(c) The difference between 60/ SP‘ﬁaZil and the corresponding derivative
of O i, With pressure at constant Absolute Salinity, 0Oy, ... / 8P‘S (obtained
from gsw_CT_freezing_first_derivatives). The contoured values of panel (c)
are in K(Pa)_1 and the seawater salinity was taken to be
S, =850 =35.16504 g kg™'. Notice that the numbers contoured here are only a
few percent of those of 60/ SP‘ﬁaZil shown in Fig. Ice_14(b).

The dependence of S, 50/ 55A|frazil on the mass fraction of ice is illustrated in
Fig. Ice_15(b) which shows the difference relative to the case when w™ =0.
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When no frazil is present in seawater, its Conservative Temperature is
unaffected by adiabatic and isohaline changes in pressure, but its in situ
temperature changes with pressure according to the adiabatic lapse rate I'
which is usually positive. When frazil is present in seawater, an increase in
pressure results in changes in Conservative Temperature as contoured in
Fig. Ice_14(b). This dependence of the temperature (both Conservative
Temperature and in situ temperature) of the frazil-seawater mixture to changes
in pressure is rather large and negative compared with the (usually positive)
adiabatic lapse rate of seawater which is typically less than one twentieth of the
values shown in Fig. Ice_14(b) for 50/ SP‘ﬁaZil , and is usually of the opposite sign.
Another way of stating this is that the adiabatic lapse rate of the frazil-seawater
mixture is large and negative when frazil is present, compared with the small
and positive adiabatic lapse rate of seawater in the absence of frazil.

Note that the rate at which the freezing Conservative Temperature changes
with Absolute Salinity at fixed pressure, 00, / as,
different signs) to the corresponding change involving frazil ice as the pressure
varies, 89/85,| . A typical value of 00, /BSAL is —0.0583 K g™ kg while
a typical value of 80/ 5SA|ﬁazil is 23K g™ kg. By contrast, we have seen that the

, is quite different (even

is
frazil 7

only a few percent different to the corresponding change at constant Absolute
Salinity, 00, ... / BP‘SA .

variation of Conservative Temperature with pressure for frazil ice, 5@/ OP

All of the material above in these lectures concerning ice, sea ice, and frazil
ice can be found in the paper
McDougall, T. J., P. M. Barker, R. Feistel and B. K. Galton-Fenzi, 2014:
Melting of ice and sea ice into seawater, and frazil ice formation. Journal of
Physical Oceanography, 44, 1751-1775.
The properties of ice and its equilibrium properties with seawater can be
evaluated using the GSW Oceanographic Toolbox, available from www.TEOS-

10.org.
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The interaction between ice and seawater in ocean models

In a model, the mixture of seawater and frazil ice must be advected and
diffused, and the frazil crystals must be allowed to migrate vertically (Stokes
drift), but two questions arise.
1 What variables should the model carry to conserve salt and “heat”?
2 How should thermodynamic equilibrium be re-established after the
advection, diffusion and frazil-Stokes-drift part of each time step?

Bulk Absolute Salinity and Bulk potential enthalpy

We have shown that conserving the potential enthalpy of ice Ih is sufficiently
accurate (rather than having to conserve the enthalpy of ice Ih during
melting/freezing and then worry about how the enthalpy of ice Ih varies with
pressure).

This greatly simplifies our task because the First Law of Thermodynamics can
be simplified to be the conservation of the potential enthalpy of the seawater-ice

mixture.

Along with the ice mass fraction, wlh, the conserved model variables during
the advection and diffusion part of the time step should then be the “Bulk
Absolute Salinity” S, and the “Bulk potential enthalpy”, 7",

Sy = (1-wh)s

B _ h) 0 Ihy Ih
A A and h =(1—w )cp®+wh .

After the advection, diffusion and frazil-Stokes-drift part of the time step, we

have values of 5}31 and h]lg, for the model box, but these values will not be in
thermodynamic equilibrium with each other.

How do we re-establish thermodynamic equilibrium in the second half of the
time step?

The thermodynamic equilibrium condition between seawater and frazil ice

During the equilibration process, there is no exchange of mass, salt or heat with
neighbouring boxes, so the Bulk Absolute Salinity and the Bulk potential

enthalpy are conserved, so that when thermodynamic equilibrium is reached at
the end of the full time step we must have

(1 - wlh) S, = Sfl and (1 - wlh)cg(ﬂ + whah = h?,

and in addition, the values of all these thermodynamic variables mutually adjust
so that they satisfy the freezing condition at the end of the full time step.

Hence we seek the zero of the function of the ice mass fraction w"

0= f(wlh) - hlla B (1_ Wlh)cggﬁeezing(SA’p) - Wlhhgrleezing(SA’p)‘

where S, is related to w" by S, =82 / (1 - wlh). Note that f (wlh) is indeed a

function of only the ice mass fraction w™.
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To solve f (wlh) =0 we use an improved version of Newton's Method which
converges at the rate 1+ \/5 and is described in McDougall T. J. and S. J. Wotherspoon,
2014: A simple modification of Newton’s method to achieve convergence of order 1+ \/5 . Applied
Mathematics Letters, 29, 20-25. http://dx.doi.org/10.1016/j.am1.2013.10.008 .

The derivative f ’(wlh) is given by

0,
f’(WIh) = ngf‘rcczing (SA 2 p) - hlf‘}r‘cczing (SA > p) - SA CZ e

95, |
_ N A wh ah[flrleezing
(l—wlh) aSA ‘p

An efficient way of determining when there is no frazil ice component

If, at the end of the first part of the time step h? is sufficiently “warm”, there
will be no frazil ice. In this case the solution is
h _ _ B _ B/ 0
wh =0, s, =S8  and e =n/d.
What is an efficient way of detecting when h? is “too warm” for frazil ice to

be present? Based on the definition of the equilibrium condition (repeated from
above),

_ h) _ B h) 0 Th 2 1h
0= f(W ) - hl - (1_ w )Cp(afreezing(SA’p) -w hfreezing(SA’p)’
we evaluate this function when the ice mass fraction is zero, that is,
h _ _ 1B 0 B
f(W - 0) - hl - cpefreezing (SAl’p)’

and if this is positive then the answer is simply seawater (and no frazil ice), so
that we can set, w™ =0, S N S)zl and ® = h? / cg . The computer time
involved with making this decision is simply the time it takes to evaluate the
freezing Conservative Temperature O . . (S Al p).

The computer code needed to restore the seawater/ice properties at the end of

the first half of the time step (Sfl, h?, p) to thermodynamic equilibrium is
contained in the computationally efficient code

gsw_frazil_properties_potential_poly(SA_bulk, h_pot_bulk, p)

which has outputs of (S 1 O, th) .
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Buoyancy frequency N
plz+th) @
h i Figure 11-1 When an incompressible
fluid parcel of density p(z) is vertically
2 ) O displaced from level z to level z + h

in a stratified environment, a buoyancy
force appears because of the density
difference p(z) — p(z+ h) between the
particle and the ambient fluid.

First consider the incompressible situation as illustrated in the figure. The
figure shows that when a parcel is displaced upwards from its resting position
in a stably stratified fluid, it experiences a downwards buoyant force because it

is denser than the fluid of the environment that surrounds it at its new location.
This force is indicated by the downwards-directed arrow in the figure.

When the fluid is compressible there is a vertical gradient of in situ density
p, given by
9P| p

0Pl o

= pkP, (vertical isentropic density gradient)

even when a fluid layer is completely well mixed so that Absolute Salinity,
entropy and Conservative Temperature are all independent of height. In this
compressible well-mixed case, the fluid parcel illustrated above would decrease
its in situ density in moving upwards by the distance #, but at its new location,
its density would be the same as that of the fluid around it at this height. So in
order to quantify the vertical stability, that is, in order to quantify the vertical
buoyant force that the parcel experiences at its new location, we need to take
into account this vertical gradient of in situ density p due to the fluid’s
isentropic (and isohaline) compressibility « .

The square of the buoyancy frequency (sometimes called the Brunt-Vaisila
frequency), N?, is given in terms of the vertical gradients of density and
pressure, or in terms of the vertical gradients of Conservative Temperature and
Absolute Salinity by (the g on the left-hand side is the gravitational
acceleration, and x, y and z are the spatial Cartesian coordinates)

g'N? = —plp.+xP = -p7(p.- R/
a®® | - p°9s, /o4

The buoyancy frequency N has units of radians per second, and since a radian

(3.10.1)

x, Xy
is unitless, N has dimensions of s'. The buoyancy frequency N is the highest
frequency of internal gravity waves in a density-stratified fluid like the ocean or
atmosphere. The corresponding shortest period of internal gravity waves is
27t/ N which varies from about 20 minutes in the upper ocean to a few hours in
the deep ocean. (This is to be compared with 27m/f >12hours where
f =2Qsing= 1.458 423 00x10*sing s, is the Coriolis parameter where ¢ is
latitude and €2 is the rotation rate of the earth [in radians per second]).

For two seawater parcels separated by a small distance Az in the vertical,
an equally accurate method of calculating the buoyancy frequency is to bring
both seawater parcels adiabatically and without exchange of matter to the
average pressure and to calculate the difference in density of the two parcels
after this change in pressure. In this way the potential densities, defined with
reference pressure being the mean pressure of the two fluid parcels, are being
compared at the same pressure. This common procedure calculates the
buoyancy frequency N according to

91



Thermodynamics Lectures, 2017 92

Ap®
N’=g(a®0.-p%s, | ~-£22_ 3.10.2a
g(e®0.-p°s,.) e (3.10.2a)
or
g% Ap®
N’=g’p(B°S,, - a°0,) = o (3.10.2b)

where Ap® is the difference between the potential densities of the two seawater
parcels with the reference pressure being the average of the two original
pressures of the seawater parcels. Eqn. (3.10.2b) has made use of the hydrostatic
relation P, =—gp, and AP is the difference in the pressures of the two parcels,
in Pa.

This difference in potential density, Ap®, between two seawater parcels can
be evaluated more easily when density is expressed in the form p = [)(S 0 0, p)
than when it is expressed in the form p = p(S Ao b p) ; witness

Ap® = [)( S:eep’ Qdeer, 13) _ f)( Szhallow’ @hallow 1_7)
p

(Sieep, Q(Sieep’ tdeep’pdeep’ ]_7)7 ﬁ) _ p(SZha“OW , e(Szhallow , tshallow 5'pshallow , ]_7), ﬁ)

where p = %( prP 4+ pShaH"W) . Compared with the first line of the above equation,
the second line requires more calculations, and the expression is unnecessarily

convoluted.
The “Stability Ratio” R, of a vertical water column is defined as
«®0
V4

z

(3.15.1)

R, is the ratio of the vertical contribution from Conservative Temperature to
that from Absolute Salinity to the static stability N? of the water column.

The neutral tangent plane

The “neutral tangent plane” is that plane in physical space in which the local
parcel of seawater can be moved an infinitesimal distance without being subject
to a vertical buoyant restoring force; it is the plane of neutral- or zero- buoyancy.

Take the seawater parcel at the central point and enclose it in an insulating
plastic bag, then move it to a new location a small distance away. Its density
will change by dp = pk6P . At the same location the seawater environment has a
density difference of p = p(K5P+ Bess A —0{65@)). If the seawater parcel is
happy to sit still at its new location, it must not be feeling a vertical buoyant
(Archimedean) force, and this requires that its density is equal to that of the
environment at its new location. That is, we must have

pxSP = p(k8P+ BO5S, — 0°00) . (Neutral_1)
Hence, along a neutral trajectory the variations of §, and © of the ocean obey
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Bess A= a®60 . (Neutral_2)

Incidentally, this thought experiment involving the adiabatic and isohaline
displacement of fluid parcels is typical of our thinking about turbulent fluxes.
We imagine the adiabatic and isohaline movement of fluid parcels, and then we
let these parcels mix molecularly with their surroundings. Central to this way of
thinking about turbulent fluxes are the following two desirable properties of the
tracer that is being mixed.

(1) it must be a “potential” property, for otherwise its value will change
during the adiabatic and isohaline displacement so it is difficult to define a flux
of the quantity, and

(2) it should preferably be a “conservative” fluid property so that when it
does mix intimately (that is, molecularly) with its surrounding, we can be sure
that no funny business is going on; no magic, undesirable production or
destruction of the property.

Expressing this definition of a neutral tangent plane °5S, = «®°80 in terms
of the two-dimensional gradient of properties in the neutral tangent plane, we
have that

—p'V,p+xkV,P =-p(V,p-V P/c}) = a®V,0- V.S, = 0, (3112)

where, by way of reminder the relevant thermal expansion coefficient a® and
saline contraction coefficient B° are defined by

a® = _19p and p° = 1p

= 2.18.3), (2.19.3
56 pas - 1890199)

N2

Here V, is an example of a projected non-orthogonal gradient

_ ot
V,ﬂ':ﬁ

e 3—;rj + 0k, (3.11.3)
that is widely used in oceanic and atmospheric theory and modelling.
Horizontal distances are measured between the vertical planes of constant
latitude x and longitude y while the values of the property 7 are evaluated on
the r surface (e. g. an isopycnal surface, or in the case of V , a neutral tangent
plane). Note that V 7 has no vertical component; it is not directed along the r
surface, but rather it points in exactly the horizontal direction.
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A very accurate finite amplitude version of achieving B°8S, = a®80 is to
equate the potential densities of the two fluid parcels, each referenced to the
average pressure p = 0.5( P+ pb). In this way, when two parcels, parcels a and
b, are on a neutral tangent plane then [)(Sf\,@a,ﬁ) = [)(Si,@b,f)); see the figure
below which involves the thought process of moving both parcels to pressure p .

The (three dimensional) normal vector to the neutral tangent plane n is
given by
-1 72 -1 -1
N°n = —p"Vp+«xVP = - Vp—-VP/c?
£ PP P ( P ) (3.11.1)
= a°Ve - BoVs,.

As defined, n is not quite a unit normal vector, rather its vertical component is
exactly k, that is, its vertical component is unity (k-n=1).
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Why do we think that the strong lateral mixing of mesoscale eddies is
epineutral?

“mesoscale” in the ocean means the energy-containing scale, which in the ocean is
about 20km - 100km. The ocean is full of energetic eddies at the mesoscale.
Dynamically, this 100km mesoscale in the ocean corresponds to the
~1,000 km scale of the weather systems in the atmosphere that we see on weather
maps.

“epineutral” means “along a neutral tangent plane”,
[or loosely, “along a neutral density surface”, or more loosely,
“along an isopycnal” or “along a density surface”]

The smallness of the dissipation of mechanical energy & in the ocean interior
provides the strongest evidence that the lateral mixing of mesoscale eddies occurs

' of mesoscale

along the neutral tangent plane. If the lateral diffusivity K =10°m*s~
dispersion and subsequent molecular diffusion were to occur along a surface that
differed in slope from the neutral tangent plane by an angle whose tangent was s,
then the individual fluid parcels would be transported above and below the neutral
tangent plane and would need to subsequently sink or rise in order to attain a

vertical position of neutral buoyancy.
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This vertical motion would either (i) involve no small-scale turbulent mixing,
in which case the combined process is equivalent to epineutral mixing, or (ii), the
sinking and rising parcels would mix and entrain in a plume-like fashion with the
ocean environment, so suffering irreversible diffusion (as illustrated in the figure).
If this second case were to occur, the dissipation of mechanical energy associated
with the diapycnal mixing would be observed. But in fact the dissipation of
mechanical energy in the main thermocline is consistent with a diapycnal
diffusivity of only 10°m?s™. This small value of the diapycnal (vertical)
diffusivity has been confirmed by purposely released tracer experiments.

Fictitious dianeutral diffusion

When lateral diffusion, with diffusivity K is taken to occur along a surface » other
than a neutral tangent plane, some dianeutral diffusion occurs.

We will now show that this dianeutral diffusion is the same as is achieved by a
vertical diffusivity of s’k where s is the square of the vector slope Vz-V:z
between the r surface and the neutral tangent plane. We call s°K the “fictitious”
vertical diffusivity of density.

We consider a density variable called Neutral Density y that we take to be
constant along the neutral tangent plane (ntp). The lateral flux of Neutral Density
along the r surface is

~KV,y =-Ky (V.z-V,z), (Fictitious_1)
and the component of this lateral flux across the neutral tangent plane is
~KV,y-(V,z=V,z) = —Ky.(V,z-V,z) . (Fictitious_2)

Dividing by minus the vertical gradient of Neutral Density, —y_, shows that this
flux is the same as that caused by the positive fictitious vertical diffusivity of
density (Vrz - Vnz) K =s5K.

Hence if all of this observed diapycnal diffusivity (based on the observed
dissipation of turbulent kinetic energy &) were due to mesoscale eddies mixing
along a direction different to neutral tangent planes, the (tangent of the) angle
between this mesoscale mixing direction and the neutral tangent plane, s, would
satisfy 10°m’s™ =s>K. Using K =10°m*s™ gives the maximum value of s to be
107, Since we believe that bona fide interior diapycnal mixing processes (such as
breaking internal gravity waves) are responsible for the bulk of the observed
diapycnal diffusivity, we conclude that the angular difference s between the
direction of mesoscale eddy mixing and the neutral tangent plane must be
substantially less than 107; say 2x10™ for argument’s sake. This means that over a
horizontal distance of one degree of latitude, which is 110km, we have to be able to
evaluate Neutral Density surfaces accurate to within 2m in the vertical!
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Neutral Surfaces on an ocean section

Consider starting from a “bottle (S’ 0, [)) that is on a particular neutral surface and
one wants to find the location on a neighbouring CTD cast that is neutrally related to
this “bottle”. The “adiabatic leveling method” of Bray and Fofonoff (1981), applied to
this neutral calculation, says that two seawater parcels are neutrally related when

F(p) = p(SA,G,ﬁ)—p(§A,@,ﬁ) = 0, where ﬁzO.S(p+[9).

This works fine unless there is more than one solution to F ( p) = 0, which only
occurs when the cast is very weakly stratified (i.e. low N?).

This feature of multiple solutions occurs sometimes for potential density surfaces as
well. Apart from this feature, calculating neutral directions on a single ocean
section is a well-defined problem; neutral helicity does not raise its ugly head.
There is still the issue of attaching a Neutral Density label to each surface that is
formed in this manner on an ocean section.
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What is planetary potential vorticity?

The vertical gradient of Neutral Density is not proportional to N

By analogy with fN %, the Neutral Surface Potential Vorticity ( NSPV') is defined as
—gy ™ times ¢ = f 7., and the ratio of NSPV to fN * can be shown to be

NSPY 2 A7-2(,,0 o
— =b = exp{—janspg N (aPVPG—ﬂPVpSA)-dl}

(3.20.15)
= exp{ Lmspg2 Nﬁzvplc-dl}.

The integral here is taken along an approximately neutral surface (such as a Neutral
Density surface) from a location where NSPV is equal to fN?. Notice that this is
basically proportional to the Thermobaric coefficient Tbe = (xf;) - (059 / ﬁe) ﬂg .

Figure. Map of NSPV versus fN2. Plot of the ratio of NSPV to fN° on a Neutral

Density surface in the Atlantic.

The deficiencies of fN? as a form of planetary potential vorticity have not been
widely appreciated. Even in a lake, the use of fN? as planetary potential vorticity

is inaccurate since the right-hand side of (3.20.14) is then
)
o
-pg’N?apV, 0 = pg’N7ap® Vo P[P = -—L VP, (3.20.16)
o

where the geometrical relationship V, © = -0, V@P/ P has been used along with
the hydrostatic equation. The mere fact that the Conservative Temperature
surfaces in the lake have a slope (i. e. Vg P # 0) means that the spatial variation of
contours of fN? on a © surface will not be the same as for the contours of NSPV
on a O surface in a lake.
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Figure. NSPV versus fN?in a lake. Because the thermal expansion coefficient is a

function of pressure, the vertical integral of N on the two vertical parts of the
closed loop are not equal, even in a lake.

In the situation where there is no gradient of Conservative Temperature along a
Neutral Density surface (Vy® = 0) the contours of NSPV along the Neutral Density
surface coincide with those of isopycnal-potential-vorticity (/PV'), the potential
vorticity defined with respect to the vertical gradient of potential density by
IPV =— fgp~ pe. IPV is related to fN? by (McDougall (1988)),

Py _ —gp'p? _ B°(p)[ R,/ 1] (3.20.17)
sz N2 ,B@ (p) [Rp—l]

where

@°(5,:0.0)/ B°(5,0.P) (3.17.2)
a°(5,.0,p,)/B°(54.0.p,)

Hence the ratio of NSPV to [PV, evaluated on an approximately neutral surface, is

Nspy  BO(p) [R,1]

PV B°(p,) [Rp/r—l
The sketch below indicates why NSPV is different to [PV; it is the highly
differentiated nature of potential vorticity that causes the isolines of /PV and
NSPV to not coincide even at the reference pressure p, of the potential density
variable. NSPV, fN* and IPV have the units s

] exp{,. & N7V, (px)-dl}. (3.20.18)

~ neutral surface
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P— ; 8 potential density surface
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a ; neulral surface and
* potential density surface
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H potential density surface
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1
\
I
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|

Fig. 14. A vertical cross section through three neutral surfaces and
three potential density surfaces. The reference pressure of the potential
density is the pressure of the central point, a. The neutral surface and
potential density surface that pass though this point are paralicl The
slopes of the other pairs of surfaces are different.
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Forming a single approximately neutral surface (2-dimesnional problem)

We seek an approximately neutral surface in which the neutral tangent plane
equation a®V ©-B°V S, = 0 is almost satisfied everywhere on the surface.
Because of Neutral Helicity, it will not be possible to satisfy this relationship
everywhere on the surface.

In the @ -surface software we start with an initial surface and iterate to find a
more neutral surface, usually requiring about 3 iterations if we start from a
potential density surface. In the ans (approximately neutral surface) we calculate
oz@VanSQ -B°V_§ , and a scalar potential @ is found by least squares such that

ans

(C] (€]
vV, ® =~ o, 6-8°V, S,.

ans

This scalar field ® is interpreted as the natural logarithm of the error in locally
referenced potential density of that point on the ans. This gives us the basis for
finding a better surface by moving a little bit higher or lower in the water column,
finding the point on each cast whose difference in log density is ®. These heights
then define a surface that is the next iteration in the procedure. In the absence of
Neutral Helicity, this procedure converges so that the final surface is neutral to
machine precision. In the real ocean, the presence of Neutral Helicity means that
the final converged surface is not quite neutral.

Labeling a 3-dimensional data set with Neutral Density

Analogous to the 2-dimensional picture,

we can write equations in 3 dimensions that express the spatial differences of
Neutral Density in order that the local surface of constant Neutral Density coincides
with the neutral tangent plane. We have code that works for this problem, but are
still fine-tuning it (fine tuning the weights).
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How the Neutral Density code of 1997 works

Many approximately neutral surfaces were formed in a global hydrographic atlas,
using the best ideas we had in the mid 1990’s. These surfaces were then labeled in
the mid equatorial Pacific so that there Neutral Density via a vertical integral of N*
so that

N? = — gd_}/

y dz

That is, we set b = NSPV/ ( N 2) to be unity down this one vertical cast. Clearly
then b = NSPV/ ( N 2) varied throughout the rest of the ocean.

When a “bottle” (S 0, f)) is labeled with Neutral Density using this 1997 y”"
code, the bottle’s location in latitude and longitude is used to find the surrounding
four labeled casts. The bottle (5 > o, [)) is then presented to each of these four casts
in turn, finding the depth at which F(p) = p(SA,G,ﬁ) - p(S’A,é,g_)) is zero. At this
depth, the value of the pre-labeled value of y" is obtained. The final value of
Neutral Density is a suitable average of these four values of y".
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An undesirable feature of Neutral Density

An adiabatic heaving of a water column can alter the Neutral Density label that a

seawater parcel receives, even when this parcel is a long way away (in physical
space) from the heaving motion.
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Advective and diffusive “heat” fluxes of ® and 6

The turbulent flux of a “potential” property can be thought of as the exchange of
parcels of equal mass but contrasting values of the “potential” property, and the
turbulent flux can be parameterized as being down the gradient of the “potential”
property. The conservative form of Eqn. (A.21.15) implies that the turbulent flux of
heat should be directed down the mean gradient of Conservative Temperature
rather than down the mean gradient of potential temperature. Here we quantify
the ratio of the mean gradients of potential temperature and Conservative
Temperature along the neutral tangent plane; along a surface of constant “density”
if you like.

The epineutral gradients of #, © and S, are related by (using 6 = é(S 1,9))

V,0 =6,V,0 + 6, V,S,, (A.14.3)
and using the neutral relationship V §, = (ae/ [)’@)V”(B we find
V.0 = (0, +[a®/p°);, v, 0. (A14.4)
or
‘Vne _ A 0/n0 (A
Ve By +| 0°/B° |6, - (A.14.5)

The ratio, Eqn. (A.14.5), of the epineutral gradients of & and © is shown in Figure
A.14.1 at p =0, indicating that the epineutral gradient of potential temperature is
sometimes more that 1% different to that of Conservative Temperature. This ratio
|Vn0| / |Vn®| is only a weak function of pressure.

Figure A.14.1. Contours of (|V,19|/|Vn®| - 1) x100% at p =0, showing the
percentage difference between the epineutral gradients of & and ©. The red dots
are from the ocean atlas of Gouretski and Koltermann (2004) at p = 0.
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Averaging the Conservation Equations

We will illustrate the averaging issues using Preformed Salinity S. which is
designed to be a conservative variable which obeys the following instantaneous
conservation equation

(pS:),+V-(puS.) = pdj;* =-V-F. (A.21.1)

The molecular flux of salt F*, is given by Eqn. (B.26) on page ~22 of these lecture
notes. However, in an ocean that is dominated by turbulent mixing processes, it is
completely unimportant what form the molecular fluxes take, so long as they
appear in the conservation equation as the divergence of a flux.
For completeness, we repeat the continuity equation
p,+V-(pu) = 0. (A.21.2)
Temporally averaging this equation in Cartesian coordinates (i. e. at fixed x,y,z)
gives
pi+V-(pu) =0, (A.21.3)
which we choose to write in the following form, after division by a constant density
P, (usually taken to be 1035 kg m™)
(B/p,),+ V- =0 where @=pu/p,. (A.21.4)
This velocity @ is actually proportional to the average mass flux of seawater per

unit area.

The conservation equation for Preformed Salinity (A.21.1) is now averaged in
the corresponding manner obtaining

5P —p= 5 asf = TP s —
(p%s* l+v.(5* u) = 2 Vs —pLOVFS—pLOV.(pS*u ) (A.21.5)
Here the Preformed Salinity has been density-weighted averaged, that is,
s = p_S* / p, and the double primed quantities are deviations of the instantaneous
quantity from its density-weighted average value. Since the turbulent fluxes are
many orders of magnitude larger than molecular fluxes in the ocean, the molecular
flux of salt is henceforth ignored.

The averaging process involved in Eqn. (A.21.5) has not invoked the traditional
Boussinesq approximation (where density variations are ignored except in the
gravitational force term). The above averaging process is best viewed as an average
over many small-scale mixing processes over several hours, but not over mesoscale
time and space scales. The two-stage averaging processes, without invoking the
Boussinesq approximation, over first small-scale mixing processes (several meters)
followed by averaging over the mesoscale (of order 100 km) has been performed by
Greatbatch and McDougall (2003), yielding the prognostic equation for Preformed
Salinity
+ L9V S, + 2595

Po " Po 9z
! . (A.21.6)
- - 5 S.
7.V, .(yz KVWS*) + [D 3 ]Z.

z

S S - 38,
+hlV .(—P hos*)+ (—P éS*) =L
T\ Py Po

_li Ja
h (pOhS*) z Po at

lp

Here the over-caret means that the variable (e.g. S.) has been averaged in a
thickness-and-density-weighted manner between a pair of “neutral surfaces” a
small distance apart in the vertical, v is the thickness-and-density-weighted
horizontal velocity, e is the dianeutral velocity (the vertical velocity that penetrates
through the neutral tangent plane) and e is the temporal average of e on the
“neutral surface” (that is, € is not thickness-weighted). The turbulent fluxes are
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parameterized by the epineutral diffusivity K and the dianeutral (or vertical)
diffusivity D. 7, is the vertical gradient of a suitable compressibility-corrected
density such as Neutral Density or locally-referenced potential density, and the
averaging involved in forming 7, is done to preserve the average thickness
between closely-spaced neutral tangent planes; that is, the averaging is performed
on }72_1.

The issues of averaging involved in Eqns. (A.21.5) and (A.21.6) are subtle, and
are not central to our purpose in this thermodynamics course. Hence we proceed
with the more standard Boussinesq approach, but retain the over-carets to remind
ourselves of the thickness-weighted nature of the variables.

It is important to recognize that our intuition about ocean mixing is based on
the idea of weak turbulent mixing in the vertical direction (sometimes called
“dianeutral” mixing, or “diapycnal mixing”) and strong mixing along the density
surfaces (epineutral mixing). The vertical diffusivity D is typically a few by
10°m?s™" while the epineutral diffusivity is typically K =10°m*s™ —=10°m’s™. So
the turbulent diffusivity along the neutral tangent plane is typically ~10,000,000
times greater than in the vertical direction. Actually, the so-called “vertical” or
“dianeutral” diffusivity D acts isotropically in space (that is, it acts uniformly in all
three spatial directions).

We now follow common practice and invoke the Boussinesq approximation
of ignoring variations of density except in the gravitational acceleration term. In
this common case, we begin with the instantaneous continuity equation (V-u=0)
and the instantaneous conservation equation for Preformed Salinity, written in
density coordinates (where we have ignored the very small molecular flux of salt),

1 v
. + V?’[Z] + (e)y =0, (3.20.6)
and
S. S, :
— vy Y + (eS*) =0. (instantaneous)
Y. L. '

The averaging of these equation over time between a pair of closely-spaced Neutral
Density y surfaces leads to the thickness-weighted continuty equation,

oy vﬁ.[;j + %29, (3.20.6)
7., 7. 7.

where the thickness-weighted horizontal velocity Vv is given by

V=7, (v/ 7. ) L (thickness_weighted_horiz_velocity)

where 1/ Y, is proportional to the vertical distance, the “thickness”, between two
closely-spaced Neutral Density surfaces (the thickness is dy / 7.)
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The thickness-weighted averaged version of the salinity conservation equation

SV 4w (39) L g sy
V:l, ), & &
where the thickness-weighted value of Preformed Salinity is given by

S, = ?Z(S*/)/Z)y
The advective form of Eqn. (3.20.4_5+) is

is

5.

z

(3.20.4_S")

(thickness_weighted_average)

aS, N L ; as.
+ 9V Sper = 22 o yZVn-(yz‘lKVnS*)+[D -
z

ot

dz dr

] . (A217)

n

The left-hand side is the material derivative of the thickness-weighted Preformed
Salinity with respect to the thickness-weighted horizontal velocity v and the
temporally averaged dianeutral velocity é of density coordinates. The right-hand
side is the divergence of the turbulent fluxes of Preformed Salinity; the fact that the
lateral diffusion term is the divergence of a flux can be seen when it is transformed
to Cartesian coordinates. The turbulent eddy fluxes are here parameterized with
the turbulent eddy diffusivities K and D.

The epineutral eddy diffusive flux is related to the correlations of eddy

( VI/S;/]
v ),
Here the double-primed quantities are the deviation of the instantaneous value of

perturbation quantities by

=-K }7Z‘IV yg'* . (lateral_eddy_flux)

the quantity from the thickness-weighted mean value.

In this course we are assuming Absolute Salinity to be a conservative variable,
so it too satisfies a conservation equation identical to Eqn. (A.21.7), that is,

A A

38 R .
SA 49V S e 7.V,(77'kv,8,) (DS, ) - (A21.11)
z Z/z

n

The left-hand side is the material derivative of the thickness-weighted Absolute
Salinity, written with respect to the neutral tangent plane so that it involves the
thickness-weighted horizontal velocity v and the temporally averaged dianeutral
velocity e of density coordinates.

Notice that the turbulent mixing has all originated from the left-hand side of
the instantaneous conservation equation (A.21.1). This is the nature of turbulent
mixing and its parameterization; it all comes from the eddying advection of
“potential” variables (the correlation of primed variables). The molecular
diffusivities are relegated to the role of destroying the tracer variance that is created
by the turbulent flux of tracer.

We turn now to consider the material derivative of Conservative Temperature
in a turbulent ocean. From Eqns. (A.13.5) and (A.21.8) the instantaneous material
derivative of © is, without approximation,

(7, +6)
(TO + t)
The fact that the right-hand side of Eqn. (A.21.13) is not the divergence of a flux
means that © is not a 100% conservative variable. However, our previous finite-

vde _ (1, +6)
T (7, +1)

pc (—V-FR—V-FQ+p8)+[

u(p)—/.L(O)}V-FS. (A.21.13)

amplitude analysis of mixing pairs of seawater parcels has shown that the non-

constant coefficients of the divergences of the molecular fluxes of heat —V-F? and
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salt -V -F® appearing on the right-hand side of Eqn. (A.21.13) are of no practical
consequence as they cause an error in Conservative Temperature of no more than
1.2 mK (see Figure A.18.1). These non-ideal terms on the right-hand side of Eqn.
(A.21.13) in a turbulent ocean have been shown to be an order of magnitude less
than the dissipation term pe which is also justifiably neglected in oceanography

(Graham and McDougall, 2013); see the histogram on page ~57 of
these lecture notes.

Hence with negligible error, the right-hand side of Eqn. (A.21.13) may be
regarded as the sum of the ideal molecular flux of heat term —V.F? and the term
due to the boundary and radiative heat fluxes, —(7, + 6)V- FR /(T0 +1). Atthe sea
surface the potential temperature 6 and in situ temperature t are equal so that this
last term is simply —V-F" so that there are no approximations with treating the
air-sea sensible, latent and radiative heat fluxes as being fluxes of 02(9. There is an
issue at the sea floor where the boundary heat flux (the geothermal heat flux)
affects Conservative Temperature through the “heat capacity” (T, +¢)c) / (T, +6)
rather than simply cg. That is, the input of a certain amount of geothermal heat
flux will cause a local change in ® as though the seawater had the “specific heat
capacity” (To + t)cg / (To +9) rather than cg. These two specific heat capacities
differ from each other by no more than 0.15% at a pressure of 4000 dbar. If this
small percentage change in the effective “specific heat capacity” was ever
considered important, it could be corrected by artificially multiplying the
geothermal heat flux at the sea floor by (TO + 9) / ([To + t}cg) , s0 becoming the
geothermal flux of Conservative Temperature.

We conclude that for the purpose of accounting for the transport of “heat” in
the ocean it is sufficiently accurate to assume that Conservative Temperature is in
fact conservative and that its instantaneous conservation equation is

¢y (p©) +c,V-(pOu) =pcgcl1—(;) =-V-F* -V.F% (A.21.14)
Now we perform the same two-stage averaging procedure as outlined above in the

case of Preformed Salinity. The Boussinesq form of the mesoscale-averaged
equation is (analogous to Eqns. (A.21.7) or (A.21.11))

6| +v.vé+ 529 _ 7.V, (77'k9,0)+(D6,-F™) | (A21.15)
n 0z

t z n
z

As in the case of the §, equation (A.21.11), the molecular flux of heat has been
ignored in comparison with the turbulent fluxes of Conservative Temperature. The
air-sea fluxes of sensible and latent heat, the radiative and the geothermal heat fluxes

Fbound

remain in Eqn. (A.21.15) in the vertical heat flux which is the sum of these

boundary heat fluxes divided by pocf7 .

Equations (A.21.11) and (A.21.15) are the appropriately averaged conservation
equations for “salinity and temperature” in physical oceanography. Remember, they
have been thickness-weighted averaged in “density” coordinates.
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The dianeutral velocity e

Just as the lateral gradients of Absolute Salinity and Conservative Temperature are
compensating in terms of density when measured along the neutral tangent plane,
so too are the temporal derivatives when measured along the neutral tangent plane.
That is, we have not only

o®V 06— 4%V S, =0 (3.11.12)
but also
o (:)t . ﬂe SA, L =0. (Neutral_temporal)

Now here are our §, and © conservation equations to look at as we take the

next step.
aS A ; A
SA 49V S e 7.V,(77'kv,8,) (DS, ) - (A21.11)
z Z/z
6| +v.vé+ é%—e = 7.V, (7K 8+ (D6, F>) | (A2115)
n z z

Now take a® times the conservation equation (A.21.15) for © minus 3° times
the conservation equation (A.21.11) for Absolute Salinity S s, and use the above
two neutral relationships, Eqn. (3.11.12) and Eqn. (Neutral_temporal), to find the
following equation for the dianeutral velocity e¢ (note that the boundary heat flux

FPund also needs to be included for fluid volumes that abut the sea surface)

&(a®6 - [)’@SAZ) = %7V, (7.'kV,0)- p°7.V,(7.'kV,3,)

(A.22.3)

+a® (Déz)z -B° (DS‘AZ ) .
The left-hand side is equal to ég'N* and the first two terms on the right hand side
would sum to zero if the equation of state were linear, that is, if both o® and ﬂ®
were constant. Note that ¢ is the temporally averaged vertical velocity through the
neutral tangent plane at a given longitude and latitude; it has not been thickness-
weighted when it was averaged.

This equation for ég™'N* can be rewritten in the following form

eg7'N? = - K(CPV,6-V,6 + TV, 6.V P)+a°(DO.) -p° (DS‘AZ) | (A22.9)

z z

where the cabbeling coefficient is defined as

2
o _ 0da° a® 9a® a® ) 0B°
“ =%e| Tpes| |pe)es| (352
N2 A 0,p A 0,p
and the thermobaric coefficient is defined as
0/n6
o = B G I o® 9p°| 38.2
T S 9P| po or| (3.8.2)
5,0 5.0

55.0
The cabbeling nonlinearity (the C]? term) always causes “densification”, that is, it
always causes a negative dianeutral velocity, €, while the thermobaric nonlinearity
(the T;° term) can cause either dianeutral upwelling or downwelling.

The vertical turbulent diffusion terms can be re-expressed in terms of DN? so
that Eqn. (A.22.4) becomes
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~ A A ® A
EN* = - gK(CPV, 69,6 + T2V 6.V, P)

R
+ (DNz) _ DN?* 2
: (RP _l)
The Osborn (1980) relation DN?=T¢ = 0.2¢ can be used in the second line of Eqn.
q

(A.22.5) to relate upwelling é to the vertical gradient of the dissipation of turbulent
kinetic energy, £. But when doing this, one should not ignore the last term in the

[a? B° 1] (A.22.5)

a_e_ﬂeR_p

above equation, nor the cabbeling and thermobaric advection terms.

It is important to realize that the dianeutral velocity € is not a separate mixing
process, but rather is a direct result of mixing processes such as (i) small-scale

turbulent mixing as parameterized by the diffusivity D, and (ii) lateral turbulent
mixing of heat and salt along the neutral tangent plane (as parameterized by the
lateral turbulent diffusivity K) acting in conjunction with the cabbeling and
thermobaric nonlinearities of the equation of state.

The importance of the dianeutral velocity ¢ in the deep ocean
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Measuring the dissipation of Kkinetic energy: shear probes

6.4mm  Stainless Hard
diameter steeltube epoxy  Rubber tip

» 4 *_‘:-I‘:_\; 7
VW /f
Electrical Biomorph  Heat shrink
leads beam tubing

Figure 2.10.  The piczoelectric air-foil shear probe designed by Osborn (1974). 1t has
a diameter of 6.4 mm. Lateral forces caused by turbulence motion as the probe moves
steadily through the water are converted into electrical signals that are calibrated to
determine the relative turbulent velocity normal to the probe as a function of time,
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Breaking internal gravity waves; the main process causing D
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Dianeutral advection by Thermobaricity and cabbeling

112

We have seen the dianeutral advection arising from lateral diffusion in
conjunction with the thermobaric and cabbeling nonlinearities of the equation of

state in the & evolution equation

sg'N? = _K(Csvné'vné + TbG)Vn(:).V”P)+0{@(DC:)Z) B° (DS‘AZ) .

z z

where the thermobaric and cabbeling coefficients are given by

o _ @a(ae/ﬁg) aa@‘ a® aﬁe‘
L= P50 ~oop| o op|
500 5,.0 5,.0
© - 0a® a® 9a°® [ae ]2 0B°
b T g 03¢ | | po | 3¢ |
20 g as,| ) as,),

SpsP

What are thermobaricity and cabbeling; how do these processes work?

(A.22.4)

(3.8.2)

(3.9.2)

Cabbeling can be understood by looking at the isolines of potential density
above. Consider the curved red lines (and ignore parcels A and B for now). A
mixture of two parcels that both lie of a red potential contour will result in a

mixed parcel that is denser than the original density. This is cabbeling.

The cabbeling processes requires the intimate mixing, at the molecular level,
whereas the dianeutral motion of thermobaricity occurs during the isentropic
advection of the two fluid parcels (and is made permanent by the intimate
molecular diffusion which leads to the green fluid of the deepest cube above).

The dianeutral motion of thermobaricity occurs because the two parcels in the
insulating plastic bags have a different compressibility to that of the ocean that
surrounds them on their journey. So pressure changes result in a different change

in density and hence a different vertical trajectory.
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Note that
a@Vié) - BGViS‘A = —(CE)V”(:)-VH(:) + TbOVn(:)-VnP), (Epineutral_K)

so that unless «® and ﬂ® are constant, it is not possible that both Vié and ViS’ N
are zero. This can be understood as follows. The nature of the neutral constraint on
the lateral mixing process means that VHSA = (a@/ﬁ@)vné so even if Vié=0
(which is consistent with the epineutral gradient of ©, V ©, being spatially
constant), the epineutral gradient of S, , Vn§ , » must vary in space according to
V”~VHS’A = ViASA‘A = Vn(oc@/ﬂ@ -Vn(:). This leads to a dianeutral velocity & which
affects the conservation equation of both S, and ©. It is the nature of the neutral
mixing constraint, a@Vn(:) = Bevnﬁ ., that guarantees that both Vié and ViS’ N
cannot be zero simultaneously.

Note that both the thermobaric and cabbeling dianeutral advection is
proportional to the mesoscale eddy flux per unit area of “heat” along the neutral
tangent plane, —ch V.0, and is independent of the amount of small-scale
(dianeutral) turbulent mixing and hence is also independent of the dissipation of
mechanical energy €. So here we have two processes that cause mean vertical
motion through “density surfaces” but have no signature in the observations that
are made to measure vertical mixing processes; no signature in the dissipation of
mechanical energy €.

Interestingly, for given magnitudes of the epineutral gradients of pressure and
Conservative Temperature, the dianeutral advection of thermobaricity is
maximized when these gradients are parallel, while neutral helicity is maximized
when these gradients are perpendicular, since neutral helicity is proportional to
1, (V,PxV,0)-k (see Eqn. (3.13.2)).

When the cabbeling and thermobaricity processes are analyzed by considering
the mixing of two fluid parcels one finds that the density change is proportional to
the square of the property (©® and/or p) contrasts between the two fluid parcels.
This leads to the thought that if an ocean front is split up into a series of many less
intense fronts then the effects of cabbeling and thermobaricity might be reduced in
proportion to the number of such fronts. Actually, this is not the case. Rather, the
total dianeutral transport across a frontal region depends on the product of the
lateral flux of heat passing through the front and the contrast in temperature and/or
pressure across the front, but is independent of the sharpness of the front. This can
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be understood by noting from above that the dianeutral velocity due to cabbeling,
= _gN?2KCPV, 0-V 0, is proportional to the scalar product of the epineutral
flux of heat —ch V,0 and the epineutral temperature gradient V,©. We note that
while the epineutral diffusivity K varies strongly in space, commonly the
epineutral heat flux —ch V, 0O varies less fast in space than K. When spatially
integrating the dianeutral advection velocity over the area of the frontal region, one
can exploit the slowly varying nature of —ch V.0 to find that the total dianeutral
transport is approximately proportional to the lateral heat flux times the difference
in temperature across the frontal region (in the case of cabbeling) or the difference
in pressure across the frontal region (in the case of thermobaricity).

This figure is of the dianeutral velocity due to thermobaricity. In the Southern
Ocean this is a dominant mixing process, being larger than the canonical

diapycnal upwelling velocity of 107 ms™ of Munk (1966).
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~N X

The figure above shows the vertical velocity through an approximately neutral
surface caused by neutral helicity. That is, this is the actual vertical flow caused by
the helical nature of neutral trajectories. The magnitude in the Southern Ocean is at
leading order of 107 ms™

to Munk (1966).

, this being the canonical diapycnal velocity, dating back

The figure below is the total dianeutral velocity for all non-linear equation-of-state
processes, namely thermobaricity, cabbeling and the helical nature of neutral
trajectories.
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This figure is of the zonally-averaged dianeutral velocity due to the sum of
thermobaricity, cabbeling and another strange process that is due to the
thermobaric coefficient 7,°, the helical nature of neutral trajectories. In the
Southern Ocean these non-linear processes are the dominant mixing process,
being larger than the canonical diapycnal upwelling velocity of 107 ms™ of
Munk (1966).

When these dianeutral velocities are spatially integrated over the whole
world’s oceans, we find, as a function of Neutral Density,

In green is the mean dianeutral transport from the ill-defined nature of “neutral
surfaces”, blue is the dianeutral transport due to cabbeling, red due to
thermobaricity, and black is the total global dianeutral transport due to the sum of
these three non-linear processes.

These transports are to compared with the production rate of Deep and Bottom
Water in the world ocean of about (15-20)x10°m®s™. The conclusion is that
these dianeutral advection processes due to the nonlinear nature of the equation of
state of seawater are not insignificant processes.
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Double-diffusive convection; “salt-fingers”

The “budget method” of estimating the vertical diffusivity D

downward heat
diffusion

T‘ " _'_‘\——’-
adveclive heat I

—_—t
flux into basin |

? upwelling, W

Area, A - g

Figure 4.22. Heat balance in a deep-ocean basin. Flow enters a deep-ocean basin
over a sill on the left. The basin is closed on the right. There is a downward flux of heat
by diffusion from water of higher temperature above the T isotherm and upward

u.]p\\ elling) motion at speed. w, within the basin at the level of the 75 isotherm,
maintaining a steady state.

This “budget method” is a way of estimating the vertical diffusivity across

117

the

isotherm without measuring the properties of the turbulence at the centimeter

scale.

117



Thermodynamics Lectures, 2017 118

The water-mass transformation equation

It is instructive to substitute Eqn. (A.22.4) for e into the expression (A.21.15) for the
material derivative of ©, thus eliminating é and obtaining the following equation
for the temporal and spatial evolution of e) along the neutral tangent plane
(McDougall (1984))

6| +¥:V,0 =79, (7.'kV @)+KgN*2ci)z(q?vné.vné +1V,6.V,P)
d? (A.23.1)

+ DBPgN20> —A
7 de?

The term involving D has been written as proportional to the curvature of the
S A -0 diagram of a vertical cast; this term can also be written as
Dp°gN™* ((:)Z§ s -8 N (:)ZZ). The form of Eqn. (A.23.1) illustrates that when

analyzed in density coordinates, Conservative Temperature (and Absolute Salinity)

(i) are affected not only by the expected lateral diffusion process along density
surfaces but also by the nonlinear dianeutral advection processes, cabbeling and

thermobaricity,

(ii) are affected by diapycnal turbulent mixing only to the extent that the

vertical § '\ — © diagram is not locally straight, and

(iii) are not influenced by the vertical variation of D since D_ does not appear

in this equation.
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A review of our basic conservation equations

S| oo 08, o (o & as,

ALY S et = 7.V, (77'KV,8, )+ DA (A21.11)

0| +vVO+ 99 _ 7V (77'kV ©)+(DO ) . A21.15
t, a z n z n z),

eg”'N? = - K(CPV,6-V,6 + TV, 6.V P)+a°(DO.) - p° (DS‘AZ ) (A.22.4)

6| +¥:V,0 =79, (7.'kV @)+KgN*2ci)z(q?vné.vné +1V,6.V,P)
o e d (A.23.1)

+D N~°Q> —24

B gN O] prY;

Equations (A.21.11) and (A.21.15) are the fundamental evolution equations of
Absolute Salinity and Conservative Temperature in a turbulent ocean, and the pair
of equations (A.22.4) and (A.23.1) are simply derived as linear combinations of
Eqns. (A.21.11) and (A.21.15). The “density” conservation equation (A.22.4) and the
“water-mass transformation” equation (A.23.1) are in some sense the “normal
modes” of Eqns. (A.21.11) and (A.21.15). That is, Eqn. (A.22.4) expresses how
mixing processes contribute to the mean vertical velocity e through the neutral

tangent plane, while (A.23.1) expresses how the tracer called “Conservative
Temperature measured along the neutral direction” is affected by mixing processes;
this equation does not contain é.
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For completeness, the water-mass conservation equation for Absolute Salinity
that corresponds to Eqn. (A.23.1) is

A +VVS, =7, (7'kV,8, )+ KeN 7S, (CPV,0-V,6 + TPV, 6.V, P

n R (A.23.2)
d’S,
de’’
and it easy to show that @® times the right-hand side of Eqn. (A.23.1) is equal to
B° times the right-hand side of Eqn. (A.23.2).

+ Da®gN 6

Potential density p® or p’

Potential density p? is the density that a fluid parcel would have if its pressure
were changed to a fixed reference pressure p, in an isentropic and isohaline

manner. Potential density referred to reference pressure p, can be written as

P (Sptsp.p.) = P(Sa.0[Sasts 0.1 ]i0:) = g5 (SasO[Sato 21 ) 1, ). (34.2)

Using the functional forms of either p = ﬁ(SA,O,p) or p= ﬁ(SA,G,p),
potential density with respect to reference pressure p, (e. g. 1000 dbar) can be
evaluated more easily as

PO (Systspap,) = P(Syom. p,) = B(S,.0. p,) = £(S,.0. p,), (3:43)

where we note that the potential temperature € in the penultimate expression is
the potential temperature with respect to 0 dbar. Once the reference pressure is
fixed, potential density is a function only of Absolute Salinity and Conservative
Temperature (or equivalently, of Absolute Salinity and potential temperature).
Note that it is equally correct to label potential density as p? or p® (or indeed as
p") because 77, 6 and © are constant during the isentropic and isohaline pressure
change from p to p,; thatis, these variables posses the “potential” property.

Since we know that v =g, = sz = /;P, potential density may also be expressed
in terms of the pressure derivative of the expressions h= ﬁ(S IRCA p) and
h= f;(SA,G,p) as

PO (Sytpop,) = [In(5,.0.p= )] = [An(S,.0.0=5)] . (3.4.4)

The figure below shows contours of constant potential density on the §, - ©
diagram. The red contours have p =0dbar while the blue contours are with
respect to the reference pressure p =1100dbar. Notice particularly that on this

S, — © diagram the contours rotate with increasing reference pressure.
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An important consequence of this rotation can be deduced by considering the
two seawater parcels A and B. If parcels A and B were at the sea surface (that is, at
0 dbar ) then parcel B would be denser than parcel A. However, if both seawater
parcels were at 1100 dbar then the reverse is the case; now parcel A is denser than
parcel B. Therein lies a whole level of complication in physical oceanography, all
caused by the thermobaric non-linearity of the equation of state of seawater.

The symbol o, is used for 5°(S,,©, p,=1000 dbar) — 1000 kg m™ and similarly

for 0,0, and 0,, and these are called “potential density anomaly”.

Here is another figure illustrating the rotation of the potential density contours
with pressure.

8

drrrrrrecdbicesa b b b

6
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S t:‘i_ i

(39

Potential temperature (°C)
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Figure 2.1. Equation of state for sea water. Contours of the density difference
p(p.0,.8)— p(p,2°C, 34, 5 psu)are shown in the (¢, S)-planc for different values
of pressure corresponding to depths of O m (thin lines) to 5 km (thick lines) in 1 km
intervals. The contour interval is 0.25 kg m™*. The equation of state is nonlinear.
The contours (isopyenals) are curved and their slope fierns with pressure. Courtesy
of Ernst Maier-Reimer.
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Calculating the thermodynamic properties of seawater using the GSW
Oceanographic Toolbox

The computer software needed to evaluate the thermodynamic properties of

seawater is available from the web site www.TEOS-10.org The GSW Oceanographic

Toolbox (GSW stands for Gibbs SeaWater) can be downloaded in a variety of

computer languages. The list

http://www.teos-10.org/pubs/GSW _Toolbox list.pdf

lists all the available algorithms.

For the past thirty years we have taken the “raw” data of Practical Salinity S,
(PSS-78), in situ temperature ¢ (now ITS-90) and pressure p and we have used an
algorithm to calculate potential temperature 6 in order to analyze and publish
water-mass characteristics on the S, — 6 diagram. On this S, —€ diagram we have
been able to draw curved contours of potential density using EOS-80 which has
been the international standard for seawater from 1980-2009.

Under TEOS-10 this practice has now changed:- density and potential density
(and all types of geostrophic streamfunction including dynamic height anomaly)
are now not functions of Practical Salinity S, but rather are functions of Absolute
Salinity S, .

In summary, under EOS-80 we have used the observed variables (S,, 7, p) to
first form potential temperature € and then we have analyzed water masses on the
Sp —6 diagram, and we have been able to draw curved contours of potential
density on this same §, -6 diagram. Under TEOS-10, the observed variables
(Sp, t, p), together with longitude and latitude, are used to first form Absolute
Salinity S, using gsw_SA_from_SP, and then Conservative Temperature © is
calculated using gsw_CT_from_t. Oceanographic water masses are then analyzed
on the §, —© diagram (using gsw_SA_CT_plot), and potential density contours
can be drawn on this §, —© diagram using gsw_rho(SA,CT,p_ref).

So the first steps with analyzing observed oceanographic data is to calculate
and store Absolute Salinity §, and Conservative Temperature ©. Thereafter, all
the analysis uses these variables and does not make any further use of the observed
Practical Salinity Sp, nor of the in situ temperature ¢, nor of the potential

temperature 6.
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Formulas for properties of seawater and ice expressed in terms of the
Gibbs functions g(Sa, 7, p) for seawater and g(7, p) for ice.

Property

Expression in

Expression in

Symbol 2(S, 7, p) of seawater 2(T, p) of ice
specific Gibbs energy g g g
specific enthalpy h g—Tgr g—Tgr
specific Helmholtz energy f g psg g~ P&
specific internal energy u g—Tgr —pg g—Tgr —pg
Specific entropy s —&r —&r
pressure P p P
density P 1/g, 1/g,
specific isobaric heat capacity < -Tgrr —Tgrr
thermal expansion a g/ & g/ &
isothermal compressibility Kr —Zop /! &p —Z ! &
isentropic compressibility K (g; - 2.8, )/ (gp gn) (g; - 8.8, )/ (g » gﬂ)
Sound speed w g, \/g” /(g; — g”gpp) -
chemical potential of water Hw g2~ SAgs g
pressure coefficient for ice p - —21/ pp

Freezing temperature and isobaric melting enthalpy

As an example of the use of more than one of the above thermodynamic potentials,

consider the process of the melting (or freezing) of ice into seawater.

Thermodynamic theory tells us that freezing occurs at the temperature ¢ at

which the chemical potential of water in seawater " equals the chemical potential

of ice u™. Thus, the freezing temperature ¢, is found by solving the implicit

equation

u (S, te.p) = 1" (2. 0)
or equivalently, in terms of the two Gibbs functions,
g(SA, tf,p) - SAgSA (SA, tf,p) = glh(tf,p).

The Gibbs function for ice Ih, g"(¢,p), is defined as part of TEOS-10, so we have
very accurate freezing temperatures which are functions of Absolute Salinity and

pressure.

(3.33.1)

(3.33.2)

Knowledge of the Gibbs functions of seawater and of ice also lead to very

accurate values for the latent heat of melting (isobaric melting enthalpy), namely

oh

LZI(SA’p) = AaS

h=S, —

_hIh — h_SA(‘u—T‘uT)— hlh,

A T.p

(3.34.6)

which is actually the difference between the partial specific enthalpies of water in

seawater and of ice.

I should go into this more, exactly how to calculate the isobaric melting enthalpy.
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The vertical gradient of potential density
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Figure 6.10 Vertical sections of density in the western Atlantic. Note that the depth scale
changes at 1000 m depth. Upper: og, showing an apparent density inversion below 3,000 m.
Lower: o4 showing continuous increase in density with depth. After Lynn and Reid (1968).

The potential density of a seawater sample (S CA p), referenced to reference
pressure p_ is given by pO<S A @) = ﬁ(S 2 O, pr). The vertical gradient of the
natural logarithm of potential density is 3° (p,) times the vertical gradient of
Absolute Salinity minus «° (p,) times the vertical gradient of Conservative
Temperature,

(€]
p—le agz = p° (Pr)SAZ - a®(p,)®,. (A26.2)

The ratio of this vertical gradient of potential density to the square of the
buoyancy frequency is given by (Tutorial exercise)

—gp_zlng ) ﬁz(pr)[zep/r—l] _ /3(;(17%)%9 -1, (3.20.5)
N ﬂ (p) I:RP_I:I ﬁ (p) G G

where r is the ratio of the slope on the §, —© diagram of an isoline of potential

density with reference pressure p, to the slope of a potential density surface
with reference pressure p, and is defined by

®(8,.0.p)/B°(54.0.p)

, (3.17.2)
0 (55.0.p,)/ B°(55.0.,)
and the “isopycnal temperature gradient ratio” G° is defined by
R, -1 ©
o [R] where R = g—ez (3.17.4)
[Rp/r_q B (SA)Z

is the ratio of the vertical contribution from Conservative Temperature to that
from Absolute Salinity to the static stability N? of the water column. The name
“isopycnal temperature gradient ratio” is chosen for G° because it can be
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shown that G® is the ratio of the gradient of Conservative Temperature in a
potential density surface to that in a neutral tangent plane (Tutorial exercise),

(€]
V.0 =GV 0. (3.17.3)

The saline contraction coefficient ﬁe(SA,G, p) does not vary very much
from a constant value compared with variation of the thermal expansion
coefficient a@(S 0, p) . That is, you make a 10% - 20% error by approximating
r as

ro= M . (3.17.2_approx)
a® (SA’Q’p r)
There is never any reason to actually make this approximation in numerical
work, rather this approximation can aid in thinking about what causes what in
the ocean. [You can check that this is a good approximation by inspection of the
red and blue potential density contours on the above §, —© diagram.]

Also, the slope difference between that of a neutral tangent plane and a
potential density surface is given by (Tutorial exercise)
Voe-vV e vV e

ViVer = e (1-6°)-2

(3.18.1)
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Below is a cross-section of Neutral Density in the Southern Ocean.

Before Neutral Density was available, cross-sections of density used potential
density referenced to three different reference pressures, 0 dbar, 2000 dbar, and

4000 dbar, as shown above.
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Geostrophic, hydrostatic and “thermal wind” equations

The geostrophic approximation to the horizontal momentum equations (Eqn.
(B9)) equates the Coriolis term to the horizontal pressure gradient V_P so that
the geostrophic equation is

fkxpu=-V.P or f=LKkxVP=gkxVz, (3.12.1)

where u is the three dimensional velocity and v = — k><(k><u) is the horizontal
velocity where k is the vertical unit vector (pointing upwards) and f is the
Coriolis parameter. The last part of the above equation has used V_P = =PV z

from Eqn. (3.12.4b) below and the hydrostatic approximation, which is the
following approximation to the vertical momentum equation (B9),

P =—-gp. (3.12.2)
The use of P in these equations rather than p serves to remind us that in order
to retain the usual units for height, density and the gravitational acceleration,
pressure in these dynamical equations must be expressed in Pa not dbar.

The so called “thermal wind” equation is an equation for the vertical
gradient of the horizontal velocity under the geostrophic approximation.
Vertically differentiating Eqn. (3.12.1) and using the hydrostatic equation Eqn.
(3.12.2), the thermal wind can be written

_ (1 _ _ N
fv, —(;)kaVZP+%kaZ(PZ) = —%kapp = Q,’—pkanP, (3.12.3)

where V is the projected lateral gradient operator in the isobaric surface (see

Eqgn. (3.11.3)). The last part of this equation relates the “thermal wind”, f'v_, to

the pressure gradient in the neutral tangent plane. Note that the Boussinesq
approximation has not been made to derive any part of Eqn. (3.12.3). Under the
Boussinesq approximation, V p is approximated by V_p, and the last term in

Eqn. (3.12.3) is approximated as —N? kxV,z. The derivation of Eqn. (3.12.3)

proceeds as follows. To go from the second part of Eqn. (3.12.3) to the third part
use is made of

Vpp =Vp+ pZsz and VPP =0=V P+ PZVPZ. (3.12.4a,b)

To go from the third part of Eqn. (3.12.3) to the final part, use is made of Eqn.
(3.124a)and V p =V p + p V z, which, when combined gives

Vo=Vp-p(Vz-V,z) (3.12.5)
Now Eqn. (3.12.4b) is used together with V P = V_P + PV z to find

V,P=P(V,z-V z), (3.12.6)
and this is substituted into Eqn. (3.12.5) to find

Vp=Vp-pVP[P. (3.12.7)

Now along a neutral tangent plane we know that V p = pxV P (x is the

isentropic and isohaline compressibility of seawater) and substituting this into
129



Thermodynamics Lectures, 2017 130
Eqn. (3.12.7) leads to the final expression of Eqn. (3.12.3), namely 2’,—; kxV P

(recognizing that the buoyancy frequency is defined by N* = g(K‘PZ - % pz) )-
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Neutral helicity

From page 94 of these lecture notes we know that the normal n to the neutral
tangent plane is given by
a2 -l _ _ 2
g N'n =-p Vp+xVP = —p (Vp VP/c ) (.111)
= a°Ve - povs,.

It is natural to think that all these little tangent planes would link up and form a
well-defined surface, but this is not actually the case in the ocean. In order to
understand why the ocean chooses to be so ornery [bad-tempered] we need to
understand what property the normal n to a surface must fulfill in order that
the surface exists. We will find that this property is that the scalar product of the
normal of the surface n and the curl of n must be zero everywhere on the
surface; that is n-V xn must be zero everywhere on the surface.

In general, for a surface to exist in (x, y,z) space there must be a function
¢(x, y,z) that is constant on the surface and whose gradient V¢ is in the
direction of the normal to the surface, n. That is, there must be an integrating
factor b(x, y,z) such that V¢ =bn. Assuming now that the surface does exist,
consider a line integral of bn along a closed curved path in the surface. Since
the line element of the integration path is everywhere normal to n, the closed
line integral is zero, and by Stokes’s theorem, the area integral of Vx(bn) must
be zero over the area enclosed by the closed curved path. Since the area element
of integration dA is in the direction mn, it is clear that VX(bn)-dA is
proportional to Vx(bn)~n. The only way that this area integral can be
guaranteed to be zero for all such closed paths is if the integrand is zero
everywhere on the surface, that is, if Vx(bn)~n = (Vbx n)«n + b(Vxn)~n =0,
thatis, if n-Vxn =0 at all locations on the surface.

For the case in hand, the normal to the neutral tangent plane is in the
direction o°Ve - VS , and we define the neutral helicity H" as the scalar

product of a®ve — ﬁe VS, with its curl,

H" = (a°VO - VS, )-Vx(a°Ve - VS, ) . (3.13.1)

Neutral tangent planes (which do exist) do not link up in space to form a well-
defined neutral surface unless the neutral helicity H" is everywhere zero on the
surface.

Recognizing that both the thermal expansion coefficient and the saline

contraction coefficient are functions of (S CA p), neutral helicity H" may be
expressed as the following four expressions, all of which are proportional to the
thermobaric coefficient Tb9 of the equation of state,
H" = B°1PVP-VS, xVO
= PB°TY(V,S,xV,0)k
= ¢'N’12(V,PxV,0) k
~ ¢ 'N’1?(V,PxV,0) k

(3.13.2)

where P, is simply the vertical gradient of pressure (Pam™) and V,0 and
V 0O are the two-dimensional gradients of © in the neural tangent plane and in
the horizontal plane (actually the isobaric surface) respectively. The gradients

V,P and V O are taken in an approximately neutral surface. Neutral helicity

3

has units of m™. Recall that the thermobaric coefficient is given by

T® = ﬁe(ae/ﬁ@)P = af - (a®/B°)BS - (3.8.2)
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The geometrical interpretation of neutral helicity

How can we understand neutral helicity H" geometrically? Recall the
definition of a neutral tangent plane, Eqn. (3.11.2), namely

—-p'V.p+kV P = a®V,0-B°V S, =0. (3.11.2)
This implies that the two lines VPxVp and VOXVS, both lie in the neutral
tangent plane. This is because along the line VPXxVp both pressure and in situ
density are constant, and along this line the neutral property is satisfied.
Similarly, along the line VO x VS, both Conservative Temperature and Absolute
Salinity are constant, which certainly describes a line in the neutral tangent
plane. Hence the picture emerges below of the geometry in (x, y,z) space of six
planes, intersecting in one of the two lines VPxVp and VOxVS, . The neutral

tangent plane is the only plane that includes both of these desirable lines.

Why are these lines “desirable”? Well VPxVp is desirable because it is
the direction of the “thermal wind”, and VO x VS, is desirable because adiabatic

and isohaline motion occurs along this line; a necessary attribute of a well-bred
“mixing” plane such as the neutral tangent plane.

Prolonged gazing at the above figure while examining the definition of
neutral helicity, H n Eqn. (3.13.2), shows that neutral helicity vanishes when the

two vectors VPxVp and VOXVS, coincide, and that this occurs when the two-

dimensional gradients V © are V P parallel.

Neutral helicity is proportional to the component of the vertical shear of the
geostrophic velocity (v,, the “thermal wind”) in the direction of the
temperature gradient along the neutral tangent plane V, 0, since, from Eqn.
(3.12.3) and the third line of (3.13.2) we find that

H'=pIPfv_-V 0©. (3.13.3)

Interestingly, for given magnitudes of the epineutral gradients of pressure

and Conservative Temperature, neutral helicity is maximized when these

gradients are perpendicular since neutral helicity is proportional to
.Y (V,PxV,0)-k (see Eqn. (3.132)), while the dianeutral advection of

thermobaricity, e’ = _oN?K Y}JGVHG)-V,IP, is maximized when V,© and V, P
are parallel (see Eqn. (A.22.4)).

Because of the non-zero neutral helicity, H", in the ocean, lateral motion
following neutral tangent planes has the character of helical motion. That is, if
we ignore the effects of diapycnal mixing processes (as well as ignoring
cabbeling and thermobaricity), the mean flow around ocean gyres still passes
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through any well-defined “density” surface because of the helical nature of
neutral trajectories, caused in turn by the non-zero neutral helicity. We will
return to this mean vertical motion caused by the ill-defined nature of “neutral
surfaces” in a few pages.

The skinny nature of the ocean; why is the ocean 95% empty?

The above diagram contains all of the ocean hydrography below 200 dbar from
both the North and South Atlantic ocean. The colour represents the latitude,
with blue in the south, red in the north and green in the equatorial region. It is
seen that the data fill the area on this §, —© diagram, leaving no holes.

When considering the plotting of this same data on a three-dimensional
S, —0-p “plot”, one could be forgiven for thinking that the data would fill in a
solid shape in these three dimensions. But this is not observed. Rather than the
§,—0-p data occupying the volume inside, say, a packet of Toblerone
chocolate, instead, the data resides on the cardboard of the Toblerone packet and
the chocolate is missing.
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The skinny nature of the ocean; implication for neutral helicity

If all the (S 10, p) data from the whole global ocean were to lie exactly on a
single surface in (S 10, p) space, we will prove that this requires
VS, xVO-VP = 0 everywhere in physical (x, v, z) space. That is, we will prove
that the skinniness of the ocean hydrography in (SA,®, p) space is a direct
indication of the smallness of neutral helicity H".

Since, under our assumption, all the (S 10, p) data from the whole global
ocean lies on the single surface in (S 10, p) space we have

7(8,.0.p) =0 (Twiggy_01)
for every (S 10, p) observation drawn for the whole global ocean in physical
(x, v, z) space. Taking the spatial gradient of this equation in physical (x, v, z)
space we have Vf =0 since f is zero at every point in physical (x, v, z) space.

Expanding Vf in terms of the spatial gradients VS, , VO, and VP, and taking
the scalar product with VS, xVO we find that

g—j; VP-VS§, xVO = 0. (Twiggy_02)

55,0
In the general case of f, # 0, the result VP-VS, xVO =0 is proven. In the
special case f, = 0, f is independent of P so that we have a simpler equation
for the surface f, being

7(8,.0) =0, (Twiggy_03)
which is the equation for a single line on the (S A,@) diagram; a single “water-
mass” for the whole world ocean. In this case, changes in §, are locally
proportional to those of © so that VS, xVO = 0 which also guarantees our
required relation VP-VS, xVO = 0.

Hence we have proven that the skinniness of the ocean hydrography in
(SA,®, p) space is a direct indication of the smallness of neutral helicity
H" = B°TPVP-VS, xVO.
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The skinny nature of the ocean; demonstrated from data at constant
pressure

The diagram below is a cut at constant pressure through the above three-
dimensional §, —©—p data. The cut is at a pressure of 500 dbar . This diagram
illustrates the smallness of neutral helicity from the perspective of the equation
H" = P,B°TS(V,5,%V,0) k.
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The skinny nature of the ocean; demonstrated from data on Neutral
Density surfaces

Here the “skinny” nature of the ocean will be demonstrated by looking at data on
approximately neutral surfaces; Neutral Density y" surfaces. The following lines

of the equation for neutral helicity
H" = g N’T?(V,PxV )k 6132
~ ¢'N1°(V,PxV 0)k o

show that neutral helicity A" will be small if the contours of P and of ©® ona y"
surface are lined up; thatisif V P and V © are parallel.

The ocean seems desperate to minimize H"; either V P and V © are
parallel or where they are not parallel, one of V P or V O is tiny.

Notice the rather large range of potential density of 0.28kgm™ on this Neutral
Density surface. Also, the value of potential density at the northern hemisphere
outcrop is larger than that at the southern hemisphere outcrop by about 0.1 kgm™.
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The above plots confirm that the ocean is rather “skinny” in (S 10, p) space and
hence that neutral helicity A" is small in some sense (small compared to what?).

Note that while for some purposes a zero-neutral-helicity ocean,
f(SA,G, p) =0 (Twiggy_01)
might be a reasonable approximation, this f (S 10, p) = 0 surface is multi-
valued along any particular axis. We saw this on the rotating view of the data in
three (S 10, p) dimensions. This multi-valued nature is also apparent on the
last figure which is of only one approximately neutral surface. A slightly denser

surface would have the same (S A,@) values in the Southern Atlantic as the
above plot has in the North Atlantic.

Note also in the above figures that where a particular Neutral Density
surface comes to the surface (outcrops) in the North Atlantic, it has a greater
potential density than in the Southern Ocean by between 0.07kgm™ and
0.14kgm™. This is a general feature of the ocean; approximately neutral
surfaces have different potential densities even at the reference pressure of that
potential density. The northern hemisphere and southern hemisphere parts of a
single ocean are separate branches in these multi-valued spaces.
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Consequences of non-zero neutral helicity

This diagram below is a simple example of the ill-defined nature of a “neutral
surface” and the implication for mean dianeutral motion. The lateral mixing
which causes the changes of S, and © along this path occur at very different
pressures. It is the rotation of the isopycnals on the §, —© diagram (because of
the different pressures) that causes the ill-defined nature of “neutral surfaces”,
that is, the helical nature of neutral trajectories. In this example V P and V ©
are at right angles, that is, VaP-Va(D =0.

The cork-screwing motion as fluid flows along a helical neutral trajectory causes
vertical dia-surface flow through any well-defined density surface. This mean
diapycnal flow occurs in the absence of any vertical mixing process. That is, this
mean vertical advection occurs in the absence of the dissipation of turbulent
kinetic energy, and is additional to the other dianeutral advection processes,
thermobaricity and cabbeling.
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The figure above shows the vertical velocity through an approximately neutral

surface caused by neutral helicity. That is, this is the actual vertical flow caused

by the helical nature of neutral trajectories.
Ocean is at leading order of 107 ms~
velocity, dating back to Munk (1966).

The magnitude in the Southern
, this being the canonical diapycnal

The figure below is the total dianeutral velocity for all non-linear equation-of-

state processes, namely thermobaricity, cabbeling and the helical nature of

neutral trajectories.

141



Thermodynamics Lectures, 2017 142

When globally integrated over complete density surfaces, the total transport due
to these non-linear processes can be calculated. In green is the mean dianeutral
transport from the ill-defined nature of “neutral surfaces”, blue is the dianeutral
transport due to cabbeling, red due to thermobaricity, and black is the total
global dianeutral transport due to the sum of these three non-linear processes.

We conclude from this that while the mean dianeutral transport from the ill-
defined nature of “neutral surfaces” is of leading order locally, it spatially
averages to a very small transport over a complete density surface. By contrast,
cabbeling and thermobaricity are predominantly downwards advection
everywhere, so there is little such cancellation on area integration with these
processes.

142



Thermodynamics Lectures, 2017 143
Rotation of the horizontal velocity with height

Define the angle ¢ (measured counter-clockwise with respect to due east) of the
horizontal velocity v so that

v = |V‘(005(p, sin(p) . (V_rotate_01)
Vertically differentiate this equation and take the cross product with v to obtain

2
s

(V_rotate_02)

VXV = kq)Z’V
which shows that the rate of spiraling of the horizontal velocity vector in the
vertical, ¢_, is proportional to the amount by which this velocity is not parallel
to the direction of the “thermal wind” shear v_. The last equation can be

rewritten as

2
V’ = k-vXv_=uv -vu = —v-kxv_=-v-Vxv, (V_rotate_03)

?.
which demonstrates that the rotation of the horizontal velocity with height is
proportional to the helicity of the horizontal velocity, v-V xv.

Now, substituting Eqn. (3.12.3) for the “thermal wind” v_, namely

2
fv, = (%)kavzp +1kxV (P) = ~£kxV,p = L kxV P,| (3.123)
into Eqn. (V_rotate_03) we find
0, v‘z =—-v-kxv_ = % v-V P. (V_rotate_04)

Under the usual Boussinesq approximation —( gp)_] VP is set equal to the slope

of the neutral tangent plane, Vnz , so that we have

V‘z ~ _N_f2 vV z, (V_rotate_05)

and since the vertical velocity through a geopotential, w, is given by the simple

?.

geometrical equation (where e is the dianeutral velocity, that is, the vertical
velocity through the neutral tangent plane),

w = zt‘n +v-Vz+te, (V_rotate_06)
we have
0. v‘z ~ _ NTZ (w —e—z n), (V_rotate_07)

showing that the rotation of the horizontal velocity vector with height is not
simply proportional to the vertical velocity of the flow but rather only to the
sliding motion along the neutral tangent plane, v-V z.
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The absolute velocity vector in the ocean

Neutral helicity is proportional to the component of the vertical shear of the
geostrophic velocity (v,, the “thermal wind”) in the direction of the

temperature gradient along the neutral tangent plane V, 0, since, from Eqn.

(3.12.3), namely fv_= &N,—: kxV P, and the third line of (3.13.2), namely
H"= g Nsz@(Van Vn®)~k , we find that

H"=pT2 fv_-V,0. (3.13.4)
This connection between neutral helicity and an aspect of the horizontal velocity

vector motivates the idea that the mean velocity might be somehow linked to
neutral helicity, and this link is established in this section.

The absolute velocity vector in the ocean can be written as a closed
expression involving the neutral helicity, and this expression is derived as
follows. First the Eulerian-mean horizontal velocity is related directly to mixing
processes by invoking the water-mass transformation equation (A.23.1), so that

VV,6 = 7.V, (77'KV,0)+ KeN 6 (CPV,6-V,6 + 17V 6-V,P)
o d2S o (3.13.7)
+ DB%gN 0’ W? -¥.VO-0,
where the thickness-weighted mean velocity of density-coordinate averaging, v,
has been written as v = v+'¥ , that is, as the sum of the Eulerian-mean

horizontal velocity v and the quasi-Stokes eddy-induced horizontal velocity ¥,

(McDougall and McIntosh (2001)). The quasi-Stokes vector streamfunction ¥ is
usually expressed in terms of an imposed lateral diffusivity and the slope of the
locally-referenced potential density surface (Gent et al., (1995)). More generally,

at least in a steady state when © || s zero, the right-hand side of Eqn. (3.13.7) is

n
due only to mixing processes and once the form of the lateral and vertical
diffusivities are known, these terms are known in terms of the ocean’s
hydrography. Eqn. (3.13.7) is written more compactly as

vt =t where 1=V,6/]v,9, (3.13.8)

1 . . . ..
and v~ is interpreted as being due to mixing processes.

Following Needler (1985) and McDougall (1995) the mean horizontal
velocity ¥ is split into components along and across the contours of © on the
neutral tangent plane, so that

v =vlixk +vi1, (3.13.9)

where vl = v.1xk. Note that if 1T points northwards then Txk points
eastward. The expression v-T =v- of Eqn. (3.13.8) is now vertically
differentiated to obtain

VT, = =V, T 4 = — D kxV, Pt o+, (3.13.10)
where we have used the “thermal wind” equation (3.12.3), V_ = }Z—,; kxV, P.

We will now show that the left-hand side of this equation is — (Dzv” where ¢_is

the rate of rotation of the direction of the unit vector T with respect to height (in
radians per metre). By expressing the two-dimensional unit vector 1 in terms of
the angle ¢ (measured counter-clockwise) of T with respect to due east so that

T= (cosq), sinq)), we see that 1Txk = (sinq),—cosq)), T.=-¢ 1txk and
k-tx1_ = ¢ . Interestingly, ¢_is also equal to minus the helicity of T (and to

minus the helicity of Txk), thatis, ¢, = —t-Vx1 = —(ka)'Vx(Txk),where
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the helicity of a vector is defined to be the scalar product of the vector with its

curl. From the velocity decomposition (3.13.9) and the equation T, = —¢_Txk

we see that the left-hand side of Eqn. (3.13.10), v-1_, is — (Dzv” , hence V! can be

expressed as

2 KV P - n 5
Jo N EkV,PxT v L Hi@ - Y 31311
fep 9. 9. 0.0/ T2V, 6 0.

where we have used the definition of neutral helicity A", Eqn. (3.13.2). The
expression for both horizontal components of the Eulerian-mean horizontal
velocity vector V is

2 kV Pxt v
v o | M RVIXT Y Lk + vt (3.13.12)
gp 9. 9.
and the horizontal velocity due to solely the two mixing terms can be expressed as
1 142
Y gk vty = ) (”ikj , (3.13.13)
¢Z ¢Z v z
which has the magnitude 1 (VL’E X k) - |- (vl’c) = (VL’E) ‘ .
0. z ¢, z 0

Equation (3.13.12) for the Eulerian-mean horizontal velocity v shows that
in the absence of mixing processes (so that v* = v =0) and so long as

(i) the epineutral © contours do spiral in the vertical (i.e. ¢, # 0) and

(i) ‘Vné)‘ is not zero,
then neutral helicity A" (which is proportional to k-V, Px 1) is required to be
non-zero in the ocean whenever the ocean is not motionless. Neutral helicity
arises in this context because it is proportional to the component of the thermal
wind vector V_ in the direction across the © contour on the neutral tangent
plane (see Eqn. (3.13.4)).

Planetary potential vorticity

Planetary potential vorticity is the Coriolis parameter f times the vertical
gradient of a suitable variable. Potential density is sometimes used for that
variable but using potential density (i) involves an inaccurate separation
between lateral and diapycnal advection because potential density surfaces are
not a good approximation to neutral tangent planes and (ii) incurs the non-
conservative baroclinic production term of Eqn. (3.13.5). Using approximately
neutral surfaces, “ans”, (such as Neutral Density surfaces) provides an optimal
separation between the effects of lateral and diapycnal mixing in the potential
vorticity equation. In this case the potential vorticity variable is proportional to
the reciprocal of the thickness between a pair of closely spaced approximately
neutral surfaces.

The evolution equation for planetary potential vorticity is derived by first
taking the epineutral “divergence” V, - of the geostrophic relationship from

Eqn. (3.12.1), namely fv = gkxV z . The projected “divergences” of a two-

dimensional vector a in the neutral tangent plane and in an isobaric surface, are
V.a=V.a+a -Vzand V -a =V_-a+a_-V z from which we find (using
n z z n 2 z z P

Eqn. (3.126), V,z=V z =V P/P)
V,a=V_.ata_VP/P. (3.20.1)
Applying this relationship to the two-dimensional vector fv = gkapz we

have
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V() = gV, (kxV, z) + f_-V,P/P = 0. (3.20.2)

The first part of this expression can be seen to be zero by simply calculating its

components, and the second part is zero because the thermal wind vector v_

points in the direction kXxV P (see Eqn. (3.12.3)). It can be shown that
V. ( fv) = 0 in any surface » which contains the line VPxVp .

Eqn. (3.20.2), namely Vn~( fv) = 0, can be interpreted as the divergence
form of the evolution equation of planetary potential vorticity since

v, (&) = Vn'(?,_VJ =0, (3.20.3)

where g = fy_ is the planetary potential vorticity, being the Coriolis parameter

times the vertical gradient of Neutral Density. This instantaneous equation can
be averaged in a thickness-weighted sense in density coordinates yielding

<[§)- - o
Y. Y.

where the double-primed quantities are deviations of the instantaneous values

(3.20.4)

~

from the thickness-weighted mean quantities. Here the epineutral eddy flux of
planetary potential vorticity per unit area has been taken to be down the
epineutral gradient of ¢ with the epineutral diffusivity K. The thickness-
weighted mean planetary potential vorticity is

= f7., (3.20.5)

and the averaging in the above equations is consistent with the difference
between the thickness-weighted mean velocity and the velocity averaged on the
Neutral Density surface, v — ¥V (the bolus velocity), being v -V = Kann(é),
since Eqn. (3.20.4) can be written as Vn~(f\7) = Vn-(fz_lKanA) while the
epineutral temporal average of Eqn. (3.20.3)is V, ( f\”f) =0.

The divergence form of the mean planetary potential vorticity evolution

equation, Eqn. (3.20.4), is quite different to that of a normal conservative variable
such as Absolute Salinity or Conservative Temperature,

{Vg J oY (@] ' ). v, (7'kV,6) + (D?Z)Z ., (6_Eqn)

T 7. 7.
because in Eqn. (3.20.4) the following three terms are missing; (i) the vertical
diffusion of ¢ with diffusivity D (ii) the dianeutral advection of § by the
dianeutral velocity €, and (iii) the temporal tendency term.

The mean planetary potential vorticity equation (3.20.4) may be put into the
advective form by subtracting ¢ times the mean continuity equation,

oy vﬁ.[;j + %29, (3.20.6)
Vel ), V. V.
from Eqn. (3.20.4), yielding (}72_1 times)
il +9Vd = 7.9, (7.kV,4) + ¢, , (3.20.7)
or
. C o oA an dg - . . .
qt‘n +Vv- Vg +eéq = d_(f = Vzvn‘(?’lean) + (qe)z . (3.20.8)

In this form, it is clear that planetary potential vorticity behaves like a

conservative variable as far as epineutral mixing is concerned, but it is quite
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unlike a normal conservative variable as far as vertical mixing is concerned;
contrast Eqn. (3.20.8) with the conservation equation for Conservative
Temperature,

O +v.v,6+0, = % = 7.V,(7.'kV,0)+(p6.) |. (A21.15)

If ¢ were a normal conservative variable the last term in Eqn. (3.20.8)
would be (Dc}z)z where D is the vertical diffusivity. The term that actually
appears in Eqn. (3.20.8), (c}é)z, is  different to (Dc}z)z by
(éé—DéZ)Z =f (5772 —D?ZZ)Z. Equation (A.22.4) for the mean dianeutral
velocity é can be expressed as é = D_ + Dy _ / 7. if the following three aspects
of the non-linear equation of state are ignored; (1) cabbeling and thermobaricity,
(2) the vertical variation of the thermal expansion coefficient and the saline
contraction coefficient, and (3) the vertical variation of the integrating factor
b(x,y,z) of Eqns. (3.20.10) - (3.20.15) below. Even when ignoring these three
different implications of the nonlinear equation of state, the evolution equations
(3.20.7) and (3.20.8) of ¢ are unlike normal conservation equations because of
the extra term

(92-Dpg.), = f(e7. - D7..), = f(D.7.), = (D.4), (3:209)
on their right-hand sides. This presence of this additional term can result in
“unmixing” of ¢ in the vertical. Consider a situation where both ¢ and @ are
locally linear functions of S A down a vertical water column, so that the S AT q
and § s © diagrams are both locally straight lines, exhibiting no curvature.
Imposing a large amount of vertical mixing at one height (e. g. a delta function
of D) will not change the § s © diagram because of the zero § s © curvature
(see the water-mass transformation equation (A.23.1)). However, the additional
term (Dzé)z of Eqn. (3.20.9) means that there will be a change in ¢ of
(Dzé)z =gD_+q D, = gD_. Thisis ¢ times a negative anomaly at the central
height of the extra vertical diffusion, and is ¢ times a positive anomaly on the
flanking heights above and below the central height. In this way, a delta
function of extra vertical diffusion induces structure in the initially straight
N ' — ¢ line which is a telltale sign of “unmixing”.

This planetary potential vorticity variable, ¢ = f7_, is often mapped on

Neutral Density surfaces to give insight into the mean circulation of the ocean on
density surfaces. The reasoning is that if the influence of dianeutral advection
(the last term in Eqn. (3.20.7)) is small, and the epineutral mixing of ¢ is also
small, then in a steady ocean V- Vnc} = 0 and the thickness-weighted mean flow
on density surfaces ¥ will be along contours of thickness-weighted planetary
potential vorticity ¢ = f7_.

Because the square of the buoyancy frequency, N?, accurately represents
the vertical static stability of a water column, there is a strong urge to regard
fN? as the appropriate planetary potential vorticity variable, and to map its
contours on Neutral Density surfaces. This urge must be resisted, as spatial
maps of fN? are significantly different to those of § = f 7.. To see why this is
the case the relationship between the epineutral gradients of ¢ and fN* will be
derived.

For the present purposes Neutral Helicity will be assumed sufficiently small
that the existence of neutral surfaces is a good approximation, and we seek the
integrating factor b= b(x, y,z) which allows the construction of Neutral Density
surfaces (y surfaces) according to
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VY _ (ﬁ@VSA - a@VG) = b (E - K‘VP) : (3.20.10)
4 p
Taking the curl of this equation gives
%X(KVP—EJ = —VkXVP. (3.20.11)
p

The bracket on the left-hand side is normal to the neutral tangent plane and
points in the direction n = -V z +k and is g_lNz(—Vnz +k). Taking the
component of Eqn. (3.20.11) in the direction of the normal to the neutral tangent
plane, n, we find
0 =VkxVP-n = (VnK + Kzn)X(VnP + F;n)-n
= VxV,Pon = VexV,Pk = (i, V,5, +K,V,0]xV, Pk (32012)
A

= T2V, PxV Ok = gN’H",

which simply says that the neutral helicity H" must be zero in order for the

dianeutral component of Eqn. (3.20.11) to hold, that is, V PxV ©-k must be
zero. Here the equalities k, = f7 and k, = — &) have been used.
A

Since Vb can be written as Vb =V b + bn, Eqn. (3.20.11) becomes
g 'N?V, Inbx(-V,z +k) = - BV, kx(-V z +k], (3.20.13)

where VP =P, (—sz + k) has been used on the right-hand side, (—sz + k)
being the normal to the isobaric surface. Concentrating on the horizontal
components of this equation, g 'N° V,Inb = - PV k, and using the
hydrostatic equation P. =—gp gives

V,Inb = pg’N72V k= —pg’N?(afV,0- B2V, S, )| (3.20.14)

The integrating factor b defined by Eqn. (3.20.10), that is
b= —gN‘Zy_'V}/~n/(n~n) = —gN_zy"V}/-n/(l +V,z'V z), allows spatial
integrals of b (B°VS A—aGVQ) = VIny to be approximately independent of
path for “vertical paths”, that is, for paths in planes whose normal has zero

vertical component.

By analogy with fN?, the Neutral Surface Potential Vorticity ( NSPV) is
defined as —gy ™' times § = f 7., so that NSPV =b fN ? (having used the vertical
component of Eqn. (3.20.10)), so that the ratio of NSPV to fN* is found by
spatially integrating Eqn. (3.20.14) to be

NSPV
N2

= b = exp-],, P’ N2 (2V,0- B2V, S, )-dl
(3.20.15)

= exp{ Lmspg2 Nﬁzvplc-dl}.

The integral here is taken along an approximately neutral surface (such as a
Neutral Density surface) from a location where NSPV is equal to fN?.
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Figure. Map of NSPV versus fN2.  Plot of the ratio of NSPV to fN” on a

Neutral Density surface in the Atlantic.

The deficiencies of fN? as a form of planetary potential vorticity have not
been widely appreciated. Even in a lake, the use of fN? as planetary potential

vorticity is inaccurate since the right-hand side of (3.20.14) is then
)
(04
-pg’N?apV, 0 = pg’N7ap® Vo P[P = - a—g Vo P, (3.20.16)

where the geometrical relationship V © = -0, Vo P/P. has been used along
with the hydrostatic equation. The mere fact that the Conservative Temperature
surfaces in the lake have a slope (i. e. Vg P # 0) means that the spatial variation
of contours of fN? on a @ surface will not be the same as for the contours of
NSPV ona © surface in a lake.

Figure. NSPV versus fN?in a lake. Because the thermal expansion coefficient

is a function of pressure, the vertical integral of N 2 on the two vertical parts of
the closed loop are not equal, even in a lake.

In the situation where there is no gradient of Conservative Temperature
along a Neutral Density surface (V. ©=0) the contours of NSPV along the
Neutral Density surface coincide with those of isopycnal-potential-vorticity
(IPV"), the potential vorticity defined with respect to the vertical gradient of
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potential density by IPV =—fgp~'p°. IPV is related to fN* by (McDougall
(1988))

v _—gpp? _ B(p)[Ro/rl] ) 1
S = - = = - = =5 (32017)
N N B°(p) [R,-1]  B°(p)G° G
so that the ratio of NSPV to [PV, evaluated on an approximately neutral
surface, is

Q) -
NSPV ﬂ@ (p) [R—1] exp {Lnsgz NV, (pK)- dl}' (3.20.18)
PV B%(p,) [R,)r-1]
The sketch below indicates why NSPV is different to [PV; it is the highly
differentiated nature of potential vorticity that causes the isolines of /PV and
NSPV to not coincide even at the reference pressure p, of the potential density
variable. NSPV, fN* and IPV have the units s

~ neutral surface

P— ; 8 potential density surface
B
a ; neulral surface and
* potential density surface
i
|
H potential density surface
i
s y Cneural surface
1
|
—
| 70

=]

Fig. 14. A vertical cross section through three neutral surfaces and
three potential density surfaces. The reference pressure of the potential
density is the pressure of the central point, a. The neutral surface and
potential density surface that pass though this point are paralicl The
slopes of the other pairs of surfaces are different.
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Production of entropy when ice melts into seawater

The general case we consider in this section has the seawater temperature
above its freezing temperature, while the ice, in order to be ice, needs to be at or
below the freezing temperature of pure water (i.e., seawater having zero
Absolute Salinity). Note that this condition permits situations in which the
initial ice temperature (say, -1 °C) is higher than or equal to that of seawater
(say, -1.5 °C), as is often the case for floating ice sheets.

In other words, the general case we are considering is not an equilibrium
situation in which certain amounts of ice and seawater co-exist without further
melting or freezing. Rather, we consider a very small mass of ice in contact with
a large mass of seawater. Without exchange of heat or matter with its
surroundings, the initial non-equilibrium two-phase state is assumed to always
turn irreversibly into a final ice-free equilibrium state after requisite relaxation
time. During the melting of ice Ih into seawater at fixed pressure, entropy
increases (or in one special case, is constant) while three quantities are
conserved; mass, salt and enthalpy. While this process is adiabatic it is not
isentropic.

The equations representing the budgets of mass, salt, enthalpy /% and entropy
N during this adiabatic melting event at constant pressure are

f

Mgy = Mgy +my, (Entropy_1)
Mgy Sy = Mgy Sy, (Entropy_2)
msfwhf = méwhi + mlhhlh . (Entropy_3)
mgwrlf = méwni + mlhnIh + my, O . (Entropy_4)

The superscripts i and f stand for the “initial” and “final” values, that is, the
values before and after the melting event, while the subscripts SW and Ih stand
for “seawater” and “ice Ih”.

When we considered the production of entropy on mixing between pairs of
seawater parcels the nonlinear production term was written as being

proportional to the mass of the sum of the two seawater parcels, that is as
£

Mgy

entropy term as proportional to the mass of ice being melted, that is as m, 67,

on, but in the present situation it seems sensible to write the production of

since the production of entropy is proportional to m, . Hence we will take on to

I
be the non-conservative production of entropy on melting per unit mass of ice.

The mass, salinity and enthalpy conservation equations and the entropy
evolution equation, (Entropy_1) — (Entropy_4), can be combined to give the
following expressions for the differences in the Absolute Salinity, the specific
enthalpy and the specific entropy of the seawater phase due to the melting of the

ice,
(s5-51) = —ZTI;S; = —whsi, (Entropy_5)

(A" = 1) = = wh(n = "), (Entropy_6)

(n" =) = = wh(n'=n"™) + when, (Entropy_7)

where we have defined the mass fraction of melted ice Th my, / msfw as w. The
initial and final values of the specific enthalpy of seawater are given by
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W= h(Sj\,ti,p) = ﬁ(S;,@i,p) and Af = h(Si,tf,p) = l;(Si,@)f,p), where the
specific enthalpy of seawater has been written in two different functional forms,
one being a function of in situ temperature and the other being a function of
Conservative Temperature. Similarly, the initial and final values of the specific
entropy of seawater are given by n' = n(Sj\,ti,p) = ﬁ(Sj\,G)i) and
7‘[i = n(S;,ti,p) = ﬁ(Sj\,G)i), noting that when expressed in terms of Conservative
Temperature, the specific entropy of seawater is not separately a function of
pressure.

We have illustrated the use of Eqns. (Entropy_5) and (Entropy_6) in Fig.
Ice_4(a), Ice_5 and Ice_6. Note that at p=0dbar Eqn. (Entropy_6) becomes
simply ©f @' = — th(G)i —n" cg).

Rearranging Eqn. (Entropy_7) we find the following expression for the
production of entropy on melting, 67,

£ i
on = (nW# + (ni —n"‘) ) (Entropy_8)

Another way of expressing this uses Eqn. (Entropy_6) to arrive at

i_
on = —(nf - ni)((hhffhhi)) + (ni - nlh) . (Entropy_9)

This equation provides a way of calculating the non-conservative production
of entropy because for given input parameter values we know how to calculate
the final values of Absolute Salinity and enthalpy, and hence the final value of
both in situ and Conservative Temperatures. Hence we can calculate the final
value of entropy n' and then use Eqn. (Entropy_9) to evaluate &n. But before
we do this, we will use the above equations to explore the situation near
thermodynamic equilibrium.

Entropy production as equilibrium conditions are approached

Here we prove that as equilibrium conditions are approached, the production
of entropy on melting tends to zero. That is, as the temperature of both the
seawater and the ice approach the freezing temperature, the production of
entropy per unit mass of ice that melts, 6n, approaches zero. The specific
entropy of seawater is regarded as being a function of specific enthalpy, that is,
in the functional form n=7 (S ol p), and the entropy difference between the
initial and final entropies of seawater, n° — ', is expanded as a Taylor series in
Absolute Salinity and specific enthalpy at fixed pressure about the initial
properties at (S;, hi,p) as

n'-n' = ﬁSA(SZ—S;)+ﬁh(hf—hi)

2 A A 2 (Entropy_10)

+dg  (SE=S3) My (SE-SL (A" =8 )+ 10, (W =) + hot,
where h.o.t. stands for “higher order terms”. Using Eqns. (Entropy_5) and
(Entropy_6) to express the property differences (Si —S;) and (hf — h') of Eqn.
(Entropy_9) in terms of the known properties of the initial state, whS; and
wlh(hi - hlh), we find the following Taylor series expression for the production
of entropy on (from substituting Eqn. (Entropy_10) into Eqn. (Entropy_8))
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on = _ﬁSAS/ix _ ﬁh(hi_hlh) n (ni _nlh)
Entropy_11)
hi = iV, s ifpi_ 71 = i om)? ( Py
+w {%nSASA(SA) +nhSASA(h —h )+%nhh(h —h ) } + h.o.t.

The terms on the right-hand side of this equation are all in terms of properties of
the initial state, before melting occurs, and the partial derivatives are all
evaluated at (S;, hi,p) .

From the Fundamental Thermodynamic Relation,
dh —vdP = (T, +t)dn + udS,, we note that the partial derivatives of specific
entropy that appear in Eqn. (Entropy_11) are given by

ﬁSA = —u/T and n, = /7, (Entropy_12a,b)
where T = T +¢ is the Absolute Temperature and u is the relative chemical

potential of seawater. Substituting these expressions for ﬁSA and 7, into Eqn.
(Entropy_11) gives

on = ?—25; - %(hi_hlh) + (ni _nm)

\2 . . 5 (Entropy_13)
+wh FﬁsAsA (Sj\) + ﬁhSAS;\(hl—hIh) + %F’hh(hl_hlh) } t hodt

" of ice that

can melt in seawater approaches zero (because the temperature of the seawater

As equilibrium conditions are approached, the mass fraction w

approaches the freezing temperature and has little excess enthalpy available to
melt much ice). Hence, as equilibrium conditions are approached, the terms
proportional to w™ in Eqn. (Entropy_13) can be ignored.

The enthalpy of seawater is defined in terms of the Gibbs function of

seawater by h = g — Tg,, and the enthalpy of ice Ih is given in term of the Gibbs
Th

-
seawater and of ice Th are the negatives of their respective temperature

function of ice Th by A™ =g" -T7"g Correspondingly, the entropies of
derivatives, that is, n =-— gr and nlh =— g;h . Also, the relative chemical
potential of seawater u is the derivative of the Gibbs function of seawater with
respect to Absolute Salinity, u = s,/ the chemical potential of ice Ih is /th = gIh
and the chemical potential of water in seawater is u=g-8 A8s, = &~ S u.
Considering the case where the mass fraction of ice tends to zero, the right-hand
side of Eqn. (Entropy_13) becomes

6n‘wm_)0 = ?—:S{l - %(hi _ hlh) 4 (ni _nIh)
= %(glh_gi + uiS[i\) B 77“‘[1 - T?I:lj (Entropy_14)
_ %(‘ulh_‘uWi_ " |:Ti B T“‘]),

This equation is a remarkably simple expression that applies for arbitrary
temperatures of seawater and of ice and is 100% accurate in the w™ — 0 limit.
Eqn. (Entropy_14) has been plotted on the same axes as Figures Ice_16(a) and
Ice_17(a) below and the plots are indistinguishable (since these panels of these
figures were for vanishingly small ice mass fraction).

As we have learnt, and as described in 10C et al. (2010), the equilibrium
between seawater and ice occurs at the temperature 7 . at which the chemical
potential of water in seawater /JW equals the chemical potential of ice /JIh , that
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is, when g"-g'+ u'S} is zero. As equilibrium conditions are approached, that
is, as the temperature of both the seawater and the ice Ih approach the freezing
temperature at given seawater salinity and pressure, we have that
[Ti - T"‘}% 0, and since both (,LLIh—‘LLWi)—) 0 and w™ — 0 in this limit, we see
by combing Eqns. (Entropy_13) and (Entropy_14) that én— 0.

This completes the proof that as equilibrium conditions are approached, the
non-conservative production of entropy on melting per unit mass of ice melted,
on, tends to zero.

Entropy production for arbitrary seawater and ice temperatures
Returning to the equation for the non-conservative production of entropy,
namely Eqn. (Entropy_8) or (Entropy_9), we have plotted 6n for three different

. . Th
values of the ice mass fraction w

on the seawater temperature -
ice temperature plot, and for S, =S, =35.16504 g kg™ at p=0dbar in both
Figures Ice_16 and Ice_17. As noted above, as wh >0, Eqn. (Entropy_9) and

Eqn. (Entropy_14) give the same results for on.
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Figure Ice_16. The production of entropy (JK (kg ice Ih)_1 ) from Eqn.
(Entropy_9) for three different values of w™ and for S = S50 =35.16504 g kg™ at
p=0dbar.
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Figure Ice_17. The production of entropy (J Kil(kg ice Ih)_1 ) from Eqn.
(Entropy_9) for three different values of w™ and for S =S, =35.16504 g kg
at p=0dbar. This is the same as Figure Ice_16, but for restricted temperature
ranges.
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Discussion of the LINEAR dependence of the production of entropy
on seawater temperature

These numerical results indicate that the production of entropy depends on
the square of the difference between the ice temperature and the freezing
temperature, but surprisingly, it depends LINEARLY on the difference between
the seawater temperature and the freezing temperature. A Taylor series analysis
of Eqn. (Entropy_13) conforms this linear dependence on [Ti -T

freeze |°

Here we attempt to understand why does the production of entropy depends

linearly on the seawater temperature difference [Ti -T since it is normal

freeze |/
to find that the production of entropy is proportional to the square of property
differences. In this regard, recall that (i) the non-conservative production of
entropy when seawater parcels are turbulently mixed to uniformity is

proportional to the square of the property differences,

m.m - 2 - - 2
on = -1 ;122 {nhh(Ah) +21],5 ARAS, + nSASA(ASA) } (A.16.6)

and (ii) the corresponding non-conservative production of entropy expressed in
terms of the molecular fluxes is given by the second line of the following

equation,
d 1
pd—Tt]:(prI)t +V.(pun) = _V.(FFQ_%FSJ

(B.24)
+ FQ~V[1J + FS~V(iJ.

T T
Since the molecular flux of heat F? is approximately proportional to the
gradient of temperature, we see that both the laminar and turbulent cases have

the production of entropy being proportional to the square of either property
differences or of property gradients.

So how is it that we have found that for the process of ice melting into
seawater (or indeed water) that the non-conservative production of entropy n
is linearly proportional to the seawater temperature (that exceeds the freezing
temperature)?

We can find the answer by doing a Taylor series expansion of Eqn.
(Entropy_13) about the equilibrium point. = The lowest-order term in
temperature differences to 67 is

M + [';f_i] S} [Ti _ Tfrchc] +
T

2
(7
(Entropy_15)
i Th i |:T1 - Tfreeze]
e R e
A i
(7

The enthalpy flux [hi - h"- S}Ahij J , per unit mass of ice Ih melted, is familiar; it
is the amount of enthalpy that effectively departs the seawater and enters the ice
(in order to convert the ice to seawater), and it includes the change in enthalpy
due to the change in the seawater salinity due to melting. So Eqn. (Entropy_15)
does seem to have the usual form of a flux of enthalpy times a difference of 1/T,

just the same as the second line of Eqn. (B.24). So the form is actually the same
as usual, it is just that with the phase change, there is an enthalpy flux per unit
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mass [hi - h"— Si\héAJ that is approximately independent of the temperature
differences.

Melting and freezing:- an entropy production pump

When ice melts into seawater that is warmer than the freezing temperature,
we have shown that there is a non-conservative production of entropy. What
happens during the reverse process, when ice forms? Well, when ice forms, it
forms at the freezing temperature, so the freezing occurs near equilibrium
conditions, so there is nearly zero production of entropy. So we seem to have a
one-way valve, or an entropy pump, in which entropy is produced on melting,
but is not produced (or consumed) on freezing.

Melting into an intermediate mass of seawater

First, consider the melting of say 1 kg of ice into 999 kg of seawater. Second,
consider the following two-stage process where we initially melt the 1 kg of ice
into just 499kg of the same seawater, and then in a second stage, mix this 500kg
of diluted and cooled seawater with the remaining 500kg of original seawater.
We would hope that the production of entropy via this two-stage process would
be the same as in the one-stage melting process, and it can be shown that this is
the case.
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THREE-DIMENSIONAL RESIDUAL-MEAN THEORY 301

mean theory allows coarse-resolution models to incorporate the effects of
temporal eddies and of limited spatial resolution. By seeking a parame-
terization for the quasi-Stokes streamfunction, (6), and adding this to the
components shown in (41) and (42) that account for the limited horizontal
resolution, an extra skew diffusive flux, (see (10) and (11)), can be added to
a coarse-resolution ocean model. The equivalence of this procedure to aver-
aging the instantaneous flow in density coordinates has been demonstrated,
and this equivalence provides the physical motivation for the H&TRM the-

ory.
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What is an appropriate average velocity?




Transport of water of given density classes



The overturning streamfunction of Gent et al (1995)



Transport of water of given density classes

Hirst & McDougall (1996)






The TRM eddy flux balance in an eddy-resolving model

Ve, ¥y o Vi) X107 Ve(-y, ¥, PeV 1Y) x107

 The basic residual-mean balance misses 21% of the effects of
eddy fluxes. The TRM theory only misses 4% of the action,

and so provides a more accurate springboard to pursue eddy
parameterization.



The ill-defined nature of “neutral surfaces”

The local direction of neutral mixing is the plane that is normal to



The helical nature of neutral trajectories

n = avVe - VS,

For a neutral surface to be well-defined, Neutral Helicity,
H =n-V xn has to be zero.



Neutral Helicity

The neutral tangent plane is the plane in which an in situ fluid
parcel can be moved small distances without feeling a

buoyant restoring force.

The normal to the neutral tangent plane is in the direction
aVO — BVS, where « is the thermal expansion coefficient
and B is the sallne contraction coefficient. (This recognizes

that p = p( ))

These neutral tangent planes link up to form a well-defined
neutral surface only if the helicity, H, is zero, where

=(aVO - VS, )-Vx(aVe - VS, )

If helicity were exactly zero everywhere then the entire global
ocean data would lie on a single surface in S, —©— p space
rather than filling a volume in this space. That s, if H =0
everywhere, then the data all lie on a surface f( ,p) 0.



The ocean is very thin, like Twiggy

We are still searching for a convincing
explanation for why the world ocean is
95% empty.



The §,—© diagram for the Atlantic, 250 dbar to the bottom

While this plot of all the data from both the North & South
Atlantic looks “solid” or “full” on the S, — © diagram, ...

Colour is latitude; blue in the south,
green at the equator, red in the north.



...the ocean is actually quite "thin” in §, — ©— p space.



Call the World Ocean “twiggy’; it's all skin and bone

Atlantic Ocean, 500dbar to 3300dbar



An end view of the Atlantic “twiggy”

Atlantic Ocean, 500dbar to 3300dbar



The global ocean is quite “thin” in §,— ©— p space.

The world's oceans take up a fair amount of space in §,— © space
butin §,— ©—p space it lies near a single surface:

The Global Ocean The North Atlantic

colour is latitude — red is north and blue is south



The ill-defined nature of “neutral surfaces”

Neutral helicity H = (aV@ — ﬁVSA)-Vx(ocVQ — ﬁVSA) can be written as

H = [T,Vp-VS, xVO
= ¢ 'N°T,V, pxV Ok
= pzﬁTprSA XVp®-k
where the thermobaric coefficientis 7, = o , — (a/ﬁ)ﬁp.
H being zero implies
(a) that the line VS, x VO lies in an isobaric surface, and

(b) that contours of p and © in a neutral tangent plane are parallel, and

(c) that S, and © data in an isobaric surface describe a line (rather
than an area) on the S, —© diagram.



The ill-defined nature of “neutral surfaces”

(a) Zero helicity requires that VS, X VO lie in the p surface
since Vp-VS§, XxVO has to be zero.

Scanned map of p and theta on an approximately
neutral surface.



The ill-defined nature of “neutral surfaces”

(b) Zero helicity requires that the contours of constant p and ©
be parallel in a neutral tangent plane, that is, Vnp X Vn@) = 0.



The ill-defined nature of “neutral surfaces”

(c) Zero helicity requires that the contours of constant S, and ©
be parallel in an isobaric surface, that is, Vp Sy X Vp@ = 0.

Figure from
David



why is the oceanic twiggy so thin?

Recall that zero helicity requires that the
contours of constant p and © be parallel
In a neutral tangent plane, that is,

V. pxV 0=0

The Mediterranean Water happens to enter

the North Atlantic at a location and depth

where the neutral density surfaces are

approximately flat (no thermal wind), that is,

V_p =0, so that there is no possibility of V, pxV, © being
significant. The same applies to the entry of the Red Sea Water
into the Indian Ocean.

Is this just happenstance?



why is the oceanic twiggy so thin?

Why 1s
V. pxV O

Maps
so small?



An isobaric cut through “Twiggy”

Atlantic Ocean, cut at 500dbar



The thermobaric term

The thermobaric term in the
Equation of State causes many
weird and wonderful effects.

It confounds the meaning and
properties of “isopycnal
surfaces”, and it complicates
the relationship between vertical
mixing, dissipation, and
dianeutral advection.



Vertical motion due to the ocean not being 100% “skinny”

Because the ocean is not totally
“empty”in§, —O— p space, fluid
can migrate vertically through any
“density” surface simply by cork-
screwing its way along helical
neutral trajectories without the need
for any dissipation of mechanical
energy.

That is, “surfaces ain’t surfaces”.



Vertical motion due to the ocean not being 100% “skinny”

Because the ocean is not totally
“empty” in §, —©— p space, fluid
can migrate vertically through any
“density” surface simply by cork-
screwing its way along helical neutral
trajectories without the need for any
dissipation of mechanical energy.

If the global ocean volume in§, —O©-p
space were not so tiny, it would make no
sense to study diapycnal mixing, tidal
mixing, and diapycnal tracer diffusion.



Why is it important that the World Ocean is ~93% “empty”?

If the concept of a “density” surface through which advection is
caused only by dissipative mixing processes is to make sense, all the
hydrography from the World Ocean must approximately lie on a single
surface in §, —©®— p space.

Otherwise, fluid can migrate through any such “density” surface
simply by cork-screwing its way along helical neutral trajectories
without the need for any dissipation of energy or any diapycnal
mixing.

If the global ocean volume in §, —©—p
space were not so tiny, it would make no
sense to study diapycnal mixing, tidal
mixing, diapycnal tracer diffusion (the
WOCE TRE experiment) and breaking
internal gravity waves.



Why is it important that the World Ocean is ~93% “empty”?

Is the ocean’s skinniness just a fluke? | know of no explanation for the
ocean’s emptiness, except that if it were not so, the vertical upwelling
achieved by the helical nature of neutral trajectories would be so large
as to render the ocean unsteadly.

If this hypothesis is correct, it implies that the
upwelling caused by helicity is a leading order
process, comparable to the Munk upwelling/
diffusion balance in the deep ocean.

The magnitude of the mean upwelling in the
deep ocean achieved by this helicity needs to
be quantified. If this is significant, it implies
that the zoo of known diapycnal mixing
processes of internal waves, double diffusion



An Atlantic cross- section showing various types of density surface



Slope differences between various surfaces & neutral tangent planes



Slope differences between various surfaces & neutral tangent planes



Fictitious Diapycnal Mixing with s, as model coordinate

* The



Improvements in forming approximately
neutral surfaces

Start with any “density” surface and evaluate
ginitial — ﬁva SA L OfVa )
Then find the perturbation field ®'(x,)) such that
€ zginitial +V P
a

is minimized. @' is the natural logarithm of the locally
referenced potential density and its value on the initial surface
can be used to find the new height of the new surface.

This process 1s repeated until the optimized solution is
found. This “omega surface” approach was used by
Klocker et al. (2009) but was hard to justify.



The integrating factor b

The integrating factor b relates the gradient of locally-referenced
potential density to the gradient of Neutral Density.

vy
Y

Vp

- b(,B@VSA - oc®V(~)) ( p

K‘VP)

Taking the curl of this expression gives

Vb Vp

(K‘VP— —) = —Vk X VP,
P

and the horizontal component of this equation is

V.inb = pg’N7V x = —pg’N7(afV,0- BV 5, |



The factor b and planetary PV



One cause of b variation; Another cause of b variation;
the epineutral S, gradient even in a Lake, b varies



The spatial variation of b in the Atlantic Ocean



Improvements in forming approximately
neutral surfaces

The way we now can justify the vertical step of the “omega
surface” approach is to use an estimate of b to form

gl — pBV S, — baV,0
Then we find the perturbation field @"(x, y) such that
é — 8"11’11'[1&1 4 Vaq)u

is minimized. @" is now the natural logarithm of Neutral
Density, and its value on the initial surface can be used to find
a new height of the new surface.

This process 1s repeated until the optimized solution is found.



Improvements in forming an approximately neutral surface

This new “omega surface” code is working well, and we plan to
implement it in an ocean model at run time so that every grid point
in the ocean model gets a Neutral Density label at every time step.
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But note the subtle features : : : :
of Neutral Density surfaces, 2 4 6 8 10
as illustrated on the d lterations

following figure.
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Non-quasi-material nature of Neutral Density



